Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Transl Med ; 22(1): 544, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844980

RESUMO

BACKGROUND: Several studies have demonstrated a strong correlation between impaired Succinate dehydrogenase (SDH) function and the advancement of tumors. As a subunit of SDH, succinate dehydrogenase complex subunit C (SDHC) has been revealed to play tumor suppressive roles in several cancers, while its specific role in colorectal cancer (CRC) still needs further investigation. METHODS: Online database were utilized to investigate the expression of SDHC in colorectal cancer and to assess its correlation with patient prognosis. Cell metastasis was assessed using transwell and wound healing assays, while tumor metastasis was studied in a nude mice model in vivo. Drug screening and RNA sequencing were carried out to reveal the tumor suppressor mechanism of SDHC. Triglycerides, neutral lipids and fatty acid oxidation were measured using the Triglyceride Assay Kit, BODIPY 493/503 and Colorimetric Fatty Acid Oxidation Rate Assay Kit, respectively. The expression levels of enzymes involved in fatty acid metabolism and the PI3K/AKT signaling pathway were determined by quantitative real-time PCR and western blot. RESULTS: Downregulation of SDHC was found to be closely associated with a poor prognosis in CRC. SDHC knockdown promoted CRC metastasis both in vitro and in vivo. Through drug screening and Gene set enrichment analysis, it was discovered that SDHC downregulation was positively associated with the fatty acid metabolism pathways significantly. The effects of SDHC silencing on metastasis were reversed when fatty acid synthesis was blocked. Subsequent experiments revealed that SDHC silencing activated the PI3K/AKT signaling axis, leading to lipid accumulation by upregulating the expression of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) and reduction of fatty acid oxidation rate by suppressing the expression of acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1A (CPT1A). CONCLUSIONS: SDHC deficiency could potentially enhance CRC metastasis by modulating the PI3K/AKT pathways and reprogramming lipid metabolism.


Assuntos
Neoplasias Colorretais , Ácidos Graxos , Camundongos Nus , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Ácidos Graxos/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transdução de Sinais , Masculino , Feminino , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Camundongos , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos BALB C
2.
Geriatr Nurs ; 58: 388-398, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880079

RESUMO

BACKGROUND: Malnutrition is prevalent among elderly cancer patients. This study aims to develop a predictive model for malnutrition in hospitalized elderly cancer patients. METHODS: Data from January 2022 to January 2023 on cancer patients aged 60+ were collected, involving 22 variables. Key variables were identified using the LASSO (Least Absolute Shrinkage and Selection Operator) method, and nine machine learning models were tested. SHAP was used to interpret the XGBoost model. Malnutrition prevalence was assessed. RESULTS: Among 450 participants, 46.4 % were malnourished. Key predictors identified were ADL (Activities of Daily Living), ALB (Albumin), BMI (Body Mass Index) and age. XGBoost had the highest AUC of 0.945, accuracy of 0.872, and sensitivity of 0.968. Higher ADL and age increased malnutrition risk, while lower ALB and BMI reduced it. CONCLUSIONS: The XGBoost model is highly effective in detecting malnutrition in elderly cancer patients, enabling early and rapid nutritional assessments.

3.
J Med Virol ; 96(5): e29659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747016

RESUMO

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Assuntos
Antígenos CD , Proteína 5 Relacionada à Autofagia , Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Vírus da Hepatite B , Replicação Viral , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Células Hep G2 , Hepatite B/virologia , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Transdução de Sinais , Antígeno 2 do Estroma da Médula Óssea/metabolismo
4.
J Gastrointest Surg ; 28(4): 538-547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583908

RESUMO

BACKGROUND: With the development of endoscopic technology, endoscopic submucosal dissection (ESD) has been widely used in the treatment of gastrointestinal tumors. It is necessary to evaluate the depth of tumor invasion before the application of ESD. The convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist in the classification of the depth of invasion in endoscopic images. This meta-analysis aimed to evaluate the performance of CNN in determining the depth of invasion of gastrointestinal tumors. METHODS: A search on PubMed, Web of Science, and SinoMed was performed to collect the original publications about the use of CNN in determining the depth of invasion of gastrointestinal neoplasms. Pooled sensitivity and specificity were calculated using an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity. RESULTS: A total of 17 articles were included; the pooled sensitivity was 84% (95% CI, 0.81-0.88), specificity was 91% (95% CI, 0.85-0.94), and the area under the curve (AUC) was 0.93 (95% CI, 0.90-0.95). The performance of CNN was significantly better than that of endoscopists (AUC: 0.93 vs 0.83, respectively; P = .0005). CONCLUSION: Our review revealed that CNN is one of the most effective methods of endoscopy to evaluate the depth of invasion of early gastrointestinal tumors, which has the potential to work as a remarkable tool for clinical endoscopists to make decisions on whether the lesion is feasible for endoscopic treatment.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Gastrointestinais , Humanos , Inteligência Artificial , Neoplasias Gastrointestinais/cirurgia , Neoplasias Gastrointestinais/patologia , Endoscopia Gastrointestinal/métodos , Redes Neurais de Computação , Ressecção Endoscópica de Mucosa/métodos
5.
Cell Mol Life Sci ; 81(1): 189, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643448

RESUMO

Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-ß1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-ß signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-ß1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-ß signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/genética , Fator de Crescimento Transformador beta1 , Glicólise , Neoplasias Colorretais/genética , Células-Tronco , Microambiente Tumoral , Proteína Smad3/genética , Proteína 4 Semelhante a Angiopoietina/genética
6.
Biomark Res ; 12(1): 29, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419056

RESUMO

Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.

7.
J Clin Transl Hepatol ; 12(2): 201-209, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343615

RESUMO

Exosomes are 60-120 nm diameter double-membrane lipid organelles discharged by cells. Various studies have shown that exosomes exert multiple functions in both physical and diseased processes, such as intercellular information exchange, immune response, and disease progression. Repeated chronic injury to the liver often leads to inflammation and liver fibrosis (LF), a disorder that, if unchecked, may progress to cirrhosis, liver failure, portal hypertension, and even hepatocellular carcinoma. As an essential component of host innate immunity against pathogen invasion, macrophages play an important role in modulating inflammation homeostasis by finely tuning the polarization process of macrophages into either M1 or M2 subtypes in response to different microenvironments. As a critical contributor to the inflammation process, macrophages also play a complex and instrumental function in the progression of LF. This review focuses on recent advancements in the role of macrophage-associated exosomes implicated in LF, including macrophage-released exosomes and macrophage-targeted exosomes. In addition, the progress made in exosome-based antifibrotic therapy by in vivo and in vitro studies is also highlighted.

8.
MedComm (2020) ; 4(5): e365, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37701532

RESUMO

Mounting evidence has demonstrated the considerable regulatory effects of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of various carcinomas. LncRNA Semaphorin 3B (SEMA3B) antisense RNA 1 (SEMA3B-AS1) has been found to be dysregulated in a few carcinomas recently. However, its potential function and mechanism in colorectal carcinoma (CRC) have not yet been examined. Here we show that SEMA3B-AS1 acts as a crucial regulator of CRC progression. We found that SEMA3B-AS1 expression was downregulated in CRC cell lines and tissues. Downregulation of SEMA3B-AS1 was significantly associated with poor survival in CRC patients. Overexpression of SEMA3B-AS1 reduced the cell growth and metastasis of CRC in vivo and in vitro. In addition, SEMA3B-AS1 promoted the expression of its sense-cognate gene SEMA3B, a member of the Semaphorin family (SEMAs), by recruiting EP300 to induce H3K9 acetylation at the SEMA3B promoter. Furthermore, we proved that SEMA3B-AS1 suppressed CRC angiogenesis by affecting the vascular endothelial growth factor signaling pathway activation which was regulated by the SEMA3B-NRP1 axis. Our work unravels a novel mechanism of SEMA3B-AS1 in the inhibition of CRC malignant progression and highlights its probability as a new promising diagnostic marker and therapeutic target for CRC interventions.

9.
Mol Nutr Food Res ; 67(17): e2300012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452409

RESUMO

SCOPE: Excessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti-inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model. METHODS AND RESULTS: An iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg-1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg-1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin-6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin-6 expression. CONCLUSION: These findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver-brain axis.


Assuntos
Disfunção Cognitiva , Sobrecarga de Ferro , Camundongos , Animais , Interleucina-6 , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Inflamação/tratamento farmacológico , Benzodioxóis/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Peso Corporal , Ferro
10.
Exp Ther Med ; 25(5): 198, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090069

RESUMO

Although pulmonary fibrosis (PF) causes respiratory failure and death, effective therapies for PF have not been developed. Oxymatrine (OMT), an active ingredient in the Chinese herb Sophora flavescens, exerts antifibrotic effects; however, its effect on PF remains unclear. The present study aimed to determine whether OMT decreases transforming growth factor-ß1 (TGF-ß1)-induced PF in human lung cancer A549 cells by inhibiting apoptosis and targeting the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. To construct a PF cell model, A549 cells were stimulated with TGF-ß1. The experimental groups were as follows: control (untreated cells grown in complete medium), TGF-ß1 (cells treated with 5 ng/ml TGF-ß1), OMT (cells treated with 5 ng/ml TGF-ß1 and 0.25, 0.50, or 1.00 mg/ml OMT), and OMT + LY294002 (cells treated with 5 ng/ml TGF-ß1, 1.0 mg/ml OMT. and 25 µmol/l LY294002). The effects of OMT on cell morphology (via electron microscopy), apoptosis (via Annexin V-PI staining), mitochondrial apoptosis signaling [using JC-1 method to analyze mitochondrial membrane potential (MMP)], and Bcl-2, as well as Bax expression (via western blotting and reverse transcription-quantitative polymerase chain reaction), were analyzed. OMT significantly protected cells against TGF-ß1-induced PF by inhibiting apoptosis. The specific manifestations were cell injury, as evidenced by morphological changes and decreased MMP. Following OMT treatment, the expression of the pro-apoptotic protein Bax increased, whereas that of the anti-apoptotic protein Bcl-2 decreased. The PI3K/AKT-specific inhibitor LY294002 significantly inhibited the ameliorative effects of OMT on TGF-ß1-induced apoptosis. Collectively, OMT attenuated TGF-ß1-mediated mitochondrial apoptosis of alveolar epithelial cells by activating the PI3K/AKT signaling pathway. Therefore, OMT may be a promising drug for PF treatment.

11.
World J Gastroenterol ; 29(9): 1446-1459, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36998425

RESUMO

Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-ß pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/ß-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Cirrose Hepática/terapia , Fibrose , RNA Longo não Codificante/genética , Via de Sinalização Wnt
12.
J Oncol ; 2023: 9346621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925652

RESUMO

Background: Hypoxia contributes to tumor progression and confers drug resistance. We attempted to microdissect the hypoxia landscape in colon cancer (CC) and explore its correlation with immunotherapy response. Materials and Methods: The hypoxia landscape in CC patients was microdissected through unsupervised clustering. The "xCell" algorithms were applied to decipher the tumor immune infiltration characteristics. A hypoxia-related index signature was developed via the LASSO (least absolute shrinkage and selection operator) Cox regression in The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) cohort and validated in an independent dataset from the Gene Expression Omnibus (GEO) database. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to evaluate the correlation between the hypoxia-related index (HRI) signature and immunotherapy response. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were performed to verify the mRNA expression levels of five key genes. The Cell Counting Kit-8 (CCK-8) assay and flow cytometry were performed to examine the cell viability and cell apoptosis. Results: Patients were classified into hypoxia-high, hypoxia-median, and hypoxia-low clusters in TCGA-COAD and verified in the GSE 17538 dataset. Compared with the hypoxia-low cluster, the hypoxia-high cluster consistently presented an unfavorable prognosis, higher immune scores, and stromal scores and elevated infiltration levels of several critical immune and stromal cells. Otherwise, we also found 600 hypoxia-related differentially expressed genes (HRDEGs) between the hypoxia-high cluster and the hypoxia-low cluster. Based on the 600 HRDEGs, we constructed the HRI signature which consists of 11 genes and shows a good prognostic value in both TCGA-COAD and GSE 17538 (AUC of 6-year survival prediction >0.75). Patients with low HRI scores were consistently predicted to be more responsive to immunotherapy. Of the 11 HRI signature genes, RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were differently expressed between tumors and adjacent tissues. Low expression of SNAI1, CDR2L, FRMD5, and FSTL3 could induce cell viability and promote tumor cell apoptosis. Conclusion: In our study, we discovered three hypoxia clusters which correlate with the clinical outcome and the tumor immune microenvironment in CC. Based on the hypoxia cluster and HRDEGs, we constructed a reliable HRI signature that could accurately predict the prognosis and immunotherapeutic responsiveness in CC patients and discovered four key genes that could affect tumor cell viability and apoptosis.

13.
Front Immunol ; 14: 1338918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288125

RESUMO

Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Neoplasias , Humanos , Doenças Inflamatórias Intestinais/complicações , Inflamação/complicações , Transdução de Sinais
14.
Cancer Genet ; 268-269: 37-45, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152512

RESUMO

BACKGROUND: The aim of this paper is to explore the correlation between circulating tumor DNA (ctDNA) methylation and mutations and its value in clinical early cancer screening. METHODS: We performed target region methylation sequencing and genome sequencing on plasma samples. Methylation models to distinguish cancer from healthy individuals have been developed using hypermethylated genes in tumors and validated in training set and prediction set. RESULTS: We found that patients with cancer had higher levels of ctDNA methylation compared to healthy individuals. The level of ctDNA methylation in cell cycle, p53, Notch pathway in pan-cancer was significantly correlated with the number of mutations, and mutation frequency. Methylation burden in some tumors was significantly correlated with tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1. The ctDNA methylation differences in cancer patients were mainly concentrated in the Herpes simplex virus 1 infection pathway. The area under curve (AUC) of the training and prediction sets of the methylation model distinguishing cancer from healthy individuals were 0.93 and 0.92, respectively. CONCLUSION: Our study provides a landscape of methylation levels of important pathways in pan-cancer. ctDNA methylation significantly correlates with mutation type, frequency and number, providing a reference for clinical application of ctDNA methylation in early cancer screening.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Metilação , Neoplasias/genética , Biomarcadores Tumorais/genética , Mutação
15.
Clin Orthop Surg ; 14(3): 450-457, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36061838

RESUMO

Background: Previous literatures suggest that the prognosis of Kienböck's disease might be favorable despite no surgery if it is diagnosed in late age, but the evidence is not clear. The aim of this study was to determine the radiographic and clinical progression of Kienböck's disease diagnosed at more than 50 years of age. Methods: Data of 27 patients diagnosed with Kienböck's disease at more than 50 years of age between 2000 and 2016 were investigated. During the study period, no treatment, either surgical or nonsurgical, was applied. We explained to the patients that the affected lunate was not expected to collapse further if found late in age. Annual visits were recommended, through which radiographic and clinical observation was made. We assessed changes in Stahl index and radioscaphoid angle between the initial assessment and the final follow-up, and clinical assessment was made using pain in visual analog scale (VAS) and Dornan's criteria. Results: Initially, 2 patients were in Lichtman stage 1, 6 in stage 2, 5 in stage 3A, 11 in stage 3B, and 3 in stage 4. Radiographic follow-up of at least 5 years (mean, 7.8 years) was made in 14 patients, whose Stahl index and radioscaphoid angle did not differ significantly from their initial measurements. Arthritic appearance was not found, and progression in the Lichtman stage was detected in 1 lunate, from 3A to 3B. Despite no surgical treatment for an average of 7.5 years (range, 5.0-15.7 years) of observation period in the 27 patients, average pain in VAS improved from 3.5 (range, 1-7) to 0.8 (range, 0-2), with excellent or good clinical status by Dornan's criteria. Conclusions: Our study suggests that Kienböck's disease diagnosed at more than 50 years of age can follow a benign natural course in radiographic and clinical aspects. Therefore, surgical interventions should be considered carefully in this age group.


Assuntos
Osso Semilunar , Osteonecrose , Humanos , Osso Semilunar/diagnóstico por imagem , Osso Semilunar/cirurgia , Osteonecrose/diagnóstico por imagem , Osteonecrose/cirurgia , Dor , Prognóstico , Radiografia
16.
Cancer Cell Int ; 22(1): 230, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35843949

RESUMO

BACKGROUND: The critical role of thioredoxin-interacting protein (TXNIP) in cellular sulfhydryl redox homeostasis and inflammasome activation is already widely known, however, no pan-cancer analysis is currently available. METHODS: We thus first explored the potential roles of TXNIP across thirty-three tumors mainly based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. RESULTS: TXNIP is lowly expressed in most cancers, and distinct associations exist between TXNIP expression and the prognosis of tumor patients. TXNIP expression was associated with tumor mutational burden, microsatellite instability, mismatch repair genes, tumor infiltrating immune cell abundance as well as cancer-associated fibroblasts. Moreover, ubiquitin mediated proteolysis, protein post-translational modification and other related pathways were involved in the functional mechanisms of TXNIP. CONCLUSIONS: Our first pan-cancer study comprehensively revealed the carcinostatic role of TXNIP across different tumors. And this molecule may be considered as a potential immunological and prognostic biomarker.

17.
Mater Horiz ; 9(7): 1969-1977, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35583553

RESUMO

The development of liposome-based drugs was severely limited due to inefficient loading strategies. Herein, we developed a click reaction-mediated loading procedure by designing an enzyme-sensitive maleimide (MAL) tag for ferrying chemotherapeutics into preformed liposomes containing glutathione (GSH). Based on this strategy, various hydrophobic drugs could be encapsulated into liposomes within 5-30 min with encapsulation efficiency >95% and loading capacity of 10-30% (w/w). The entrapped cargo could be slowly released from the liposomes, followed by rapid enzyme-mediated conversion into active drugs to exert antitumor activity under physiological conditions. The resulting drug-loaded liposomes significantly prolonged the blood circulation of cargos and displayed more potent in vivo antitumor efficacy than free drugs at the equitoxic dose. More importantly, this method is a remote drug loading strategy in nature, which is suitable for industrial production. This is the first demonstration of active loading of MAL-tagged chemotherapeutics in liposomes for improved antitumor efficacies, which has the potential to serve as a universal drug loading strategy for the development of liposomal formulations of chemotherapeutics.


Assuntos
Lipossomos , Composição de Medicamentos , Lipossomos/química
18.
Ther Adv Med Oncol ; 14: 17588359211070643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096147

RESUMO

BACKGROUND: We investigated the mutational landscape of circulating tumor DNA (ctDNA) in predicting tumor response to first-line treatment in patients with metastatic colorectal cancer (mCRC). METHODS: We included 41 patients with initially unresectable mCRC, treated with 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX)/5-fluorouracil/leucovorin/irinotecan (FOLFIRI) with/without bevacizumab (Bev)/cetuximab (Cet). Blood samples were prospectively collected at two timepoints: at baseline and after four cycles of first-line treatment. Mutational status of 1086 genes were studied in ctDNA by targeted next-generation sequencing (NGS). Molecular mutational burden (MMB) was defined as mean mutation frequency among obtained mutations for each gene. To evaluate the association between molecular characteristics of cfDNA and therapeutic response better, we divided these patients into MMB-high and MMB-low group according to the median value of MMB (0.3). RESULTS: Among the 41 enrolled patients, alterations of six genes (TRIM24, SPEN, RNF43, PRKAR1A, KRAS, and KDM5 C) were found at baseline. Baseline MMB of six genes was significantly lower in partial response (PR)/stable disease (SD) patients than progression disease (PD) patients (p = 0.0012). Further analysis demonstrated that genomic profiling of ctDNA from pretreatment blood samples was significantly different between PR/SD (non-PD) group and PD group. By comparing the baseline levels of KRAS MMB in the two subgroups, we found that PD cases were all MMB-high, whereas non-PD cases were mainly in MMB-low subgroup. Furthermore, patients with low-KRAS MMB had superior response rate, significantly longer progression-free survival (PFS) and longer overall survival (OS) than high-KRAS MMB group. CONCLUSIONS: This prospective and serial genomic profiling study revealed the utility of ctDNA in predicting clinical outcomes in mCRC patients under first-line treatment. Levels of KRAS MMB might aid in monitoring therapeutic efficacy in mCRC patients at pretreatment/after four cycles of first-line treatment.

19.
Cell Death Discov ; 8(1): 30, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046400

RESUMO

DDX39B (also called UAP56 or BAT1) which is a kind of DEAD-box family helicase plays pivotal roles in mRNA binding, splicing, and export. It has been found upregulated in many kinds of tumors as an oncogene. Nevertheless, the underlying molecular mechanisms of DDX39B in the proliferation of human colorectal cancer (CRC) remain fairly elusive. In our study, function experiments including the CCK8 and colony formation assay revealed that DDX39B facilitates CRC proliferation in vitro. DDX39B knockdown cells were administered for the orthotopic CRC tumor xenograft mouse model, after which tumor growth was monitored and immunohistochemistry (IHC) was performed to prove that DDX39B can also facilitates CRC proliferation in vivo. Flow cytometry demonstrated that DDX39B promotes the proliferation of CRC cells by driving the cell cycle from G0/G1 phase to the S phase. Mechanistically, RNA-binding protein immunoprecipitation-sequencing (RIP-seq) confirmed that DDX39B binds directly to the first exon of the CDK6/CCND1 pre-mRNA and upregulates their expression. Splicing experiments in vitro using a RT-PCR and gel electrophoresis assay confirmed that DDX39B promotes CDK6/CCND1 pre-mRNA splicing. Rescue experiments indicated that CDK6/CCND1 is a downstream effector of DDX39B-mediated CRC cell proliferation. Collectively, our results demonstrated that DDX39B and CDK6/CCND1 direct interactions serve as a CRC proliferation promoter, which can accelerate the G1/S phase transition to enhance CRC proliferation, and can offer novel and emerging treatment strategies targeting this cell proliferation-promoting gene.

20.
Updates Surg ; 74(3): 1087-1096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33538992

RESUMO

To investigate comparative short-term outcomes of robotic-assisted surgery (RAS) versus video-assisted thoracoscopic surgery (VATS) for older non-small cell lung cancer (NSCLC) patients. Patients ≥ 65 years old with stage I-III NSCLC operated with RAS or VATS from 2016 to 2018 were consecutively included. Propensity score-matched (PSM) method was implemented to balance inter-group biases. Totally 376 participants (224 with VATS and 152 with RAS) were included. After PSM, a cohort (144 with VATS and 107 with RAS) was generated with balanced baseline characteristics. RAS was significantly superior over VATS in the majority of perioperative outcomes, such as operating time (120.8 vs. 165.1 min), conversion rate (0.0% vs. 19.4%), and length of stay (8.6 vs. 10.8 days). RAS versus VATS was significantly associated with comparable rates of postoperative complications (OR 0.642, 95% CI 0.311-1.327), except the rate of pneumonia (OR 0.161, 95% CI 0.048-0.544). RAS leads to analogous postoperative complications and seemingly accelerates the recovery time of older NSCLC patients compared with VATS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Procedimentos Cirúrgicos Robóticos , Idoso , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Tempo de Internação , Neoplasias Pulmonares/cirurgia , Pneumonectomia/métodos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Cirurgia Torácica Vídeoassistida/efeitos adversos , Cirurgia Torácica Vídeoassistida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA