Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 259: 119398, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942253

RESUMO

Coastal cities, as hubs of social and economic activity, have witnessed rapid urbanization and population growth. This study explores the transformative changes in urban municipal wastewater treatment practices and their profound implications for greenhouse gas (GHG) emissions in Chinese coastal provinces. The approach employed in this study integrates comprehensive data analysis with statistical modeling to elucidate the complex interplay between urbanization, wastewater treatment practices, and GHG emissions. Results reveal a substantial surge in GHG emissions from coastal wastewater treatment, rising from 3367.1 Gg CO2e/yr in 1990-23644.8 Gg CO2e/yr in 2019. Spatially, the top 20 cities contribute 56.0% of emissions, with hotspots in the Bohai Sea Region, Yangtze River Delta, and Pearl River Delta. Initially dominated by emissions from untreated wastewater, post-2004, GHG emissions from treatment processes became the primary source, tied to electricity use. Growing population and urbanization rates escalated wastewater discharge, intensifying GHG emissions. From 1990 to 2019, average GHG intensity ranged between 320.5 and 676.6 g CO2e/m3 wastewater, with an annual increase of 12.3 g CO2e/m3. GHG intensity variations relate to the wastewater treatment rate, impacting CH4, N2O, and CO2 emissions, underscoring the need for targeted strategies to mitigate environmental impact.

2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612844

RESUMO

In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.


Assuntos
Caseínas , Leite , Feminino , Animais , Ovinos , Caseínas/genética , Filogenia , Proteínas do Leite , Células Epiteliais
3.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833936

RESUMO

Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.


Assuntos
Neoplasias Pulmonares , Microbiota , Ovinos , Animais , Estações do Ano , Rúmen/fisiologia , Tibet , Resposta ao Choque Frio , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Mediadores da Inflamação/metabolismo
4.
Diabetes Metab Syndr Obes ; 16: 331-343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785675

RESUMO

Background and Aims: Diabetic kidney disease (DKD) is a prevalent and intractable microvascular complication of diabetes mellitus (DM), the process of which is closely related to abnormal expression of angiogenesis-regulating factors (ARFs). Stem cell transplantation might be a novel strategy for treating DKD. This study aims to explore the effect of transplantation of human amniotic mesenchymal stem cells (hAMSCs) on renal microangiopathy in a type 1 DKD rat model (T1DRM). Methods: Seventy-two rats were randomly divided into three groups, including normal control group, DKD group, and hAMSCs transplantation group. T1DRM was established using a rat tail vein injection of streptozotocin (STZ) (55 mg/kg). hAMSCs were obtained from placental amniotic membranes during cesarean delivery and transplanted at 3 and 4 weeks through penile veins. At 6, 8, and 12 weeks following transplantation, blood glucose levels, renal function, pathological kidney alterations, and the expressions of ARFs' mRNA and protein were analyzed. Results: In T1DRM, transplanted hAMSCs that were homed at the injured site of kidneys increased ARFs' expression and decreased blood glucose levels. Compared to the DKD group, the levels of 24-h urinary protein, serum creatinine, urea, and kidney injury molecule-1 (KIM-1) were reduced in hAMSCs transplantation group. In terms of renal pathology such as the degree of basement membrane thickening, hAMSCs transplantation was also less severe than the DKD group, thereby alleviating kidney injury. Conclusion: hAMSCs transplantation might ameliorate STZ-induced chronic kidney injury through increasing ARFs' expression in kidneys and lowering blood glucose levels.

5.
J Colloid Interface Sci ; 629(Pt B): 546-558, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36179575

RESUMO

Designing dual-functional electrode materials for supercapacitors and pollutant sensors has attracted great interest from researchers for urgent demand in green energy and the environment. In this work, a novel electrode material V2CTx@NiCoMn-OH was successfully constructed for dual-functional orientation via a two-step synthesis strategy, in which the NiCoMn-OH with a three-dimensional (3D) hollow structure was fabricated by employing ZIF-67 as a template and simple anion exchange and composited with the two-dimensional (2D) layered V2CTx MXene. The intercalation of NiCoMn-OH can effectively limit the self-accumulation of V2CTx MXene nanosheets and build a 3D cross-linked hollow structure, thereby broadening the ion transport channel, exposing more active sites of V2CTx@NiCoMn-OH, and simultaneously improving the conductivity of NiCoMn-OH. Benefiting from the unique 3D cross-linked hollow structure, the optimized V2CTx@NiCoMn-OH-20 electrode material exhibits an excellent specific capacitance of 827.45 C g-1 at 1 A g-1. Furthermore, the electrode material has excellent capacitance retention of 88.44% after 10,000 cycles. Moreover, the V2CTx@NiCoMn-OH-20//AC ASC device displays a high energy density of 88.35 Wh kg-1 as well as high power density of 7500 W kg-1 during operation. Additionally, the V2CTx@NiCoMn-OH-20 exhibited excellent electrocatalytic performance in the detection of hydroquinone, including the low detection limit of 0.559 µM (S/N = 3) and the wide linear range of 2-1050 µM. Therefore, the prepared V2CTx@NiCoMn-OH-20 has great potential applications in the fields of supercapacitors and hydroquinone sensors.

6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36575567

RESUMO

Long noncoding ribonucleic acids (RNAs; LncRNAs) endowed with both protein-coding and noncoding functions are referred to as 'dual functional lncRNAs'. Recently, dual functional lncRNAs have been intensively studied and identified as involved in various fundamental cellular processes. However, apart from time-consuming and cell-type-specific experiments, there is virtually no in silico method for predicting the identity of dual functional lncRNAs. Here, we developed a deep-learning model with a multi-head self-attention mechanism, LncReader, to identify dual functional lncRNAs. Our data demonstrated that LncReader showed multiple advantages compared to various classical machine learning methods using benchmark datasets from our previously reported cncRNAdb project. Moreover, to obtain independent in-house datasets for robust testing, mass spectrometry proteomics combined with RNA-seq and Ribo-seq were applied in four leukaemia cell lines, which further confirmed that LncReader achieved the best performance compared to other tools. Therefore, LncReader provides an accurate and practical tool that enables fast dual functional lncRNA identification.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/química , RNA-Seq
7.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555241

RESUMO

Milk fat is the foremost nutrient of milk and a vital indicator in evaluating milk quality. Accumulating evidence suggests that microRNAs (miRNAs) are involved in the synthesis of milk fat. The miR-200c is closely related to lipid metabolism, but little is known about its effect on the synthesis of milk fat in MECs of ewes. Herein, the effect of miR-200c on the proliferation of ovine mammary epithelial cells (MECs) and its target relationship with a predicted target gene were investigated. The regulatory effects of miR-200c on the expression of the target genes and the content of triglycerides in ovine MECs were further analyzed. The results revealed that the expression level of miR-200c was differentially expressed in both eight tissues selected during lactation and in mammary gland tissues at different physiological periods. Overexpression of miR-200c inhibited the viability and proliferation of ovine MECs, while inhibition of miR-200c increased cell viability and promoted the proliferation of ovine MECs. Target gene prediction results indicated that miR-200c would bind the 3'UTR region of pantothenate kinase 3 (PANK3). Overexpression of miR-200c reduced the luciferase activity of PANK3, while inhibition of miR-200c increased its luciferase activity. These findings illustrated that miR-200c could directly interact with the target site of the PANK3. It was further found that overexpression of miR-200c reduced the expression levels of PANK3 and, thus, accelerated the synthesis of triglycerides. In contrary, the inhibitor of miR-200c promoted the expression of PANK3 that, thus, inhibited the synthesis of triglycerides in ovine MECs. Together, these findings revealed that miR-200c promotes the triglycerides synthesis in ovine MECs via increasing the lipid synthesis related genes expression by targeting PANK3.


Assuntos
MicroRNAs , Leite , Animais , Feminino , Células Epiteliais/metabolismo , Luciferases/metabolismo , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Ovinos/genética , Triglicerídeos/metabolismo
8.
J Clin Transl Hepatol ; 10(6): 1117-1124, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36381106

RESUMO

Background and Aims: The rapid clearance of hepatitis C virus induced by direct-acting antivirals (DAAs) affects natural killer (NK) cells, but the reported results are not consistent, and the relative mechanism was unclear. This study focused on the dynamic changes of NK cells during and after DAA treatment and analyzed the reasons. Methods: Peripheral blood from 35 chronic hepatitis C patients who were treated with DAAs were collected at baseline and weeks 1, 2, 4, 12, and post-treatment week-12. The frequency, subset, and phenotype of NK cells were assayed by flow cytometry. Lactate dehydrogenase assays were used to evaluate the cytotoxicity of NK cells. Cytokine concentrations were measured with Luminex kits. Results: All patients achieved a sustained viral response (SVR), and the NK cell frequencies were not changed significantly during DAA therapy. However, the cytotoxicity of NK cells recovered significantly early in week 1, and then continuously decreased below normal levels. The changes of genotypes including NKp30+, NKp46+, and NKG2A+ NK cells were parallel to NK function. The subset of CD56dim NK cells continuously increased and did not return to normal even at 12 weeks after treatment. Interleukin (IL)-2, IL10, IL15, interferon-gamma, and tumor necrosis factor-alpha all increased after week 4, peaked at the end of therapy, and then exhibited varying degrees of reduction with time. Conclusions: DAA treatment led to transient functional recovery of NK cells in the early stage of treatment, and then continuously decreased to below normal levels. Alterations of NK subsets, phenotypes, and the microenvironment may be involved in the changes.

9.
Front Vet Sci ; 9: 803758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433904

RESUMO

Circular RNAs (circRNAs) have a regulatory role in animal skeletal muscle development. In this study, RNA sequencing was performed to reveal the temporal regularity of circRNA expression and the effect of the circRNA-miRNA-mRNA ceRNA regulatory network on the meat quality of longissimus thoracis (LT) muscle in Tibetan sheep at different growth stages (4 months old, 4 m; 1.5 years old, 1.5 y; 3.5 years old, 3.5 y; 6 years old, 6 y). There were differences in the carcass performance and meat quality of Tibetan sheep at different ages. Especially, the meat tenderness significantly decreased (p < 0.05) with the increase of age. GO functional enrichment indicated that the source genes of the DE circRNAs were mainly involved in the protein binding, and myofibril and organelle assembly. Moreover, there was a significant KEGG enrichment in the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, as well as the calcium signaling pathway, regulating the pluripotency of the stem cells. The circRNA-miRNA-mRNA ceRNA interaction network analysis indicated that circRNAs such as circ_000631, circ_000281, and circ_003400 combined with miR-29-3p and miR-185-5p regulate the expression of LEP, SCD, and FASN related to the transformation of muscle fiber types in the AMPK signaling pathway. The oxidized muscle fibers were transformed into the glycolytic muscle fibers with the increase of age, the content of intramuscular fat (IMF) was lowered, and the diameter of the muscle fiber was larger in the glycolytic muscle fibers, ultimately increasing the meat tenderness. The study revealed the role of the circRNAs in the transformation of skeletal muscle fiber types in Tibetan sheep and its influence on meat quality. It improves our understanding of the role of circRNAs in Tibetan sheep muscle development.

10.
Animals (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268153

RESUMO

This study aimed to provide insights into molecular regulation and mitochondrial functionality under hypoxia by exploring the mechanism of adaptation to hypoxia, blood indexes, tissue morphology, mRNA/miRNA regulation, mitochondrial dynamics, and functional changes in Tibetan sheep raised at different altitudes. With regard to blood indexes and myocardial morphology, the HGB, HCT, CK, CK-MB, LDH, LDH1, SOD, GPX, LDL level, and myocardial capillary density were significantly increased in the sheep at higher altitudes (p < 0.05). The RNA-seq results suggested the DEmRNAs and DEmiRNAs are mainly associated with the PI3K-Akt, Wnt, and PPAR signaling pathways and with an upregulation of oncogenes (CCKBR, GSTT1, ARID5B) and tumor suppressor factors (TPT1, EXTL1, ITPRIP) to enhance the cellular metabolism and increased ATP production. Analyzing mRNA−miRNA coregulation indicated the mitochondrial dynamics and functions to be significantly enriched. By analyzing mitochondrial dynamics, mitochondrial fusion was shown to be significantly increased and fission significantly decreased in the heart with increasing altitude (p < 0.05). There was a significant increase in the density of the mitochondria, and a significant decrease in the average area, aspect ratio, number, and width of single mitochondrial cristae with increasing altitudes (p < 0.05). There was a significant increase in the NADH, NAD+ and ATP content, NADH/NAD+ ratio, and CO activity, while there was a significant decrease in SDH and CA activity in various tissues with increasing altitudes (p < 0.05). Accordingly, changes in the blood indexes and myocardial morphology of the Tibetan sheep were found to improve the efficiency of hemoglobin-carrying oxygen and reduce oxidative stress. The high expression of oncogenes and tumor suppressor factors might facilitate cell division and energy exchange, as was evident from enhanced mitochondrial fission and OXPHOS expression; however, it reduced the fusion and TCA cycle for the further rapid production of ATP in adaptation to hypoxia stress. This systematic study has for the first time delineated the mechanism of hypoxia adaptation in the heart of Tibetan sheep, which is significant for improving the ability of the mammals to adapt to hypoxia and for studying the dynamic regulation of mitochondria during hypoxia conditions.

11.
Food Funct ; 12(19): 9432-9442, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606535

RESUMO

The microRNA (miR)-432 is differentially expressed in the mammary gland of two breeds of lactating sheep with different milk production traits, and between the non-lactating and peak-lactation periods, but there have been no reports describing the molecular mechanisms involved. In this study, the effect of miR-432 on the proliferation of ovine mammary epithelial cells (OMECs) and the target genes of miR-432 were investigated. The effects of miR-432 on the expression of the target genes and the content of triglycerides in the OMECs were also analyzed. Transfection with a miR-432 mimic was found using CCK8 and Edu assays, to inhibit the viability of OMECs and reduce the number of proliferated OMECs. In contrast, a miR-432 inhibitor had the opposite effect to the miR-432 mimic, and together these results suggest that miR-432 inhibits the proliferation of OMECs. A dual luciferase assay revealed that the genes for stearoyl-CoA desaturase (SCD) and lipoprotein lipase (LPL) are targeted by miR-432. The transfection of miR-432 mimic into OMECs resulted in decreases in the expression of SCD and LPL, and three other milk fat synthesis marker genes; FABP4, LPIN1 and ACACA. The mimic also decreased the content of triglycerides. The miR-432 inhibitor had the opposite effect to the mimic on the expression of these genes and the level of triglycerides. This is the first study to reveal the biological mechanisms by which miR-432 inhibits milk fat synthesis in sheep.


Assuntos
Lipídeos/biossíntese , Lipase Lipoproteica/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Leite/metabolismo , Ovinos/metabolismo , Estearoil-CoA Dessaturase/genética , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Lipase Lipoproteica/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/enzimologia , MicroRNAs/antagonistas & inibidores , Ovinos/genética , Estearoil-CoA Dessaturase/metabolismo , Transfecção , Triglicerídeos/metabolismo
12.
Gene ; 803: 145893, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34384864

RESUMO

Glycolysis and heat shock proteins (HSPs) play an important role in mediating the physiological response to hypoxia. The changes of glycolysis and HSPs with altitude would provide important information regarding ways to prevent hypoxia-related sickness in both animals and humans. In this study, the expression pattern of HIF1A, PDK4, HSP27 and HSP60, indexes activity and content of glucose metabolism were detected in heart, lung, brain, and quadriceps femoris taken from Tibetan sheep (Ovis aries) that were raised at different altitudes (2,500 m, 3,500 m and 4,500 m). The expression of HIF1A and PDK4 was increased with increasing altitude in all of the tissues. The lactate dehydrogenase (LDH) activities and adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH (redox state), NAD+), lactic acid (LA), pyruvic acid (PA) contents were all increased with increasing altitude in all of the tissues. The ratio of NADH/NAD+ and LA/PA were higher in sheep at an altitude of 4,500 m than of 3,500 m and 2,500 m in all tissues, except for the NADH/NAD+ ratio in lung and quadriceps femoris. An increase in the protein and mRNA expression of ATP-independent HSP27 during hypoxia condition was detected. The expression of ATP-dependent HSP60 mRNA and protein was increased in all of the tissues at an altitude of 3,500 m than of 2,500 m, but was decreased at an altitude of 4,500 m. These results suggest that glycolysis and HSPs are upregulated to ensure energy supply and proteostasis during hypoxia, but energy conservation may be prioritized over cytoprotective protein chaperoning in Tibetan sheep tissues during extreme hypoxia.


Assuntos
Aclimatação , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Altitude , Animais , Hipóxia Celular , Regulação da Expressão Gênica , Glicólise , Ovinos , Tibet , Regulação para Cima
13.
Arch Anim Breed ; 64(2): 345-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458561

RESUMO

Glycolysis and heat shock proteins (HSPs) play an important role in hypoxia-intolerant species during hypoxia conditions. This study was conducted to evaluate the differences of glycolysis and heat shock proteins (HSPs) in Gannan yaks (Bos grunniens), with the main goal of understanding how the response to hypoxia changes with altitude. Here, the genes and enzymes of glycolysis and HSPs were detected in heart, liver, lung, kidney, and longissimus dorsi from Gannan yaks at different altitude (2500 and 3500  m ) using qPCR, western blot, and enzyme kits. The results showed that the expression of HIF1A and PDK4 was increased with altitude ( P < 0.01 ) in above tissues. Significantly increased lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide (NADH) levels and the ratio of NADH/NAD + were also observed in heart, lung, and longissimus dorsi tissues ( P < 0.05 ), as well as a decreased citric acid (CA) level ( P < 0.05 ). Furthermore, we observed significant global increases in the protein and mRNA expression levels of both the ATP-independent HSP27 and the ATP-dependent HSP60 during hypoxic conditions ( P < 0.01 ). These findings revealed that hypoxia-reprogrammed glucose metabolism promotes energy supply via up-regulated glycolysis and weakness of the tricarboxylic acid (TCA) cycle. HSPs were activated and the prioritization of cytoprotective protein chaperone functions over energy conservation in yak under hypoxic conditions. These results are useful to better understand the unique adaptability of yak, allowing them to survive in hypoxia conditions.

14.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054560

RESUMO

The preparation, characterization and gas separation properties of mixed matrix membranes (MMMs) were obtained from polyimide capped with ionic liquid and blended with metal-organic frameworks (MOFs). The synthesized MOF was amine functionalized to produce UiO-66-NH2, and its amino group has a higher affinity for CO2. Mixed matrix membranes exhibited good membrane forming ability, heat resistance and mechanical properties. The polyimide membrane exclusively capped by ionic liquid exhibited good permselectivity of 74.1 for CO2/CH4, which was 6.2 times that of the pure polyimide membrane. It is worth noting that MMM blended with UiO-66-NH2 demonstrated the highest ideal selectivity for CO2/CH4 (95.1) with a CO2 permeability of 7.61 Barrer, which is close to the 2008 Robeson upper bound. The addition of UiO-66-NH2 and ionic liquid enhanced the permselectivity of MMMs, which may be one of the promising technologies for high performance CO2/CH4 gas separation.

15.
Arch Biochem Biophys ; 695: 108648, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33098867

RESUMO

There exists a positive correlation between the unsaturated fatty acids (UFA) content in the bovine species and their taste and nutritional significance. Long-chain acyl-CoA synthetase 1 (ACSL1) is known to be involved in lipid synthesis as well as fatty acid transport and degradation. This gene has been identified as the key candidate gene for regulating lipid composition in the bovine skeletal muscle; however, its mechanism of action in regulating UFA synthesis in bovine adipocytes is unclear. In this study, we used a recombinant adenovirus vector (Ad-ACSL1) to overexpress the ACSL1 gene using Ad-NC (recombinant adenovirus of green fluorescent protein) as the control. Quantitative real-time PCR (qRT-PCR) was done to examine the gene expression associated with the synthesis of UFA, followed by the analysis of the fatty acid composition. Oil red O staining was done to examine the aggregation of lipid droplets. We found that ACSL1 overexpression was associated with an upregulated expression of PPARγ, FABP3, ACLY, SCD1, and FASN, and downregulated expression of CPT1A. Additionally, ACSL1 overexpression resulted in elevated saturated fatty acid content, especially C16:0 and C18:0, than the control group (Ad-NC cells) (p < 0.05). Furthermore, the overexpression of ACSL1 enhanced the proportion of eicosapentaenoic acid (EPA), decreased the proportion of C22:4, and significantly upregulated polyunsaturated fatty acid (PUFA) content. These results were supported by oil red O staining, which revealed an increase in the lipid droplets in bovine adipocytes after the overexpression of the ACSL1 gene. Thus, the results of this study indicated that ACSL1 positively regulated PUFA synthesis in bovine adipocytes.


Assuntos
Adipócitos/metabolismo , Coenzima A Ligases/biossíntese , Ácidos Graxos Insaturados/biossíntese , Regulação Enzimológica da Expressão Gênica , Adenoviridae , Animais , Bovinos , Coenzima A Ligases/genética , Ácidos Graxos Insaturados/genética , Vetores Genéticos , Transdução Genética
16.
J Cell Mol Med ; 24(21): 12308-12317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939977

RESUMO

Osteolytic diseases are typified by over-enhanced formation and resorbing function of osteoclasts and have a major impact on human health. Inhibition of osteoclastic differentiation and function is a key strategy for clinical therapy of osteolytic conditions. Maackiain is a natural compound extracted from Sophora flavescens, which has been applied to anti-allergic and anti-tumour treatments. The present results showed that Maackiain could restrain receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast formation and hydroxyapatite resorption dose-dependently, and interrupt the structures of F-actin belts in the mature osteoclasts. It also repressed the expressions of osteoclast-specific genes and proteins. Furthermore, Maackiain could inhibit RANKL-stimulated NF-κB and calcium signalling pathways, and dampen Nuclear factor of activated T cell cytoplasmic 1 activity, protein expression and translocation into the nucleus. These results revealed that Maackiain may have a potential therapeutic effect on osteoclast-related disorders.


Assuntos
NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pterocarpanos/farmacologia , Ligante RANK/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células da Medula Óssea/citologia , Reabsorção Óssea/patologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Feminino , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Transdução de Sinais/efeitos dos fármacos
17.
Arch Anim Breed ; 62(1): 125-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807622

RESUMO

Keratin-associated proteins (KAPs) are a structural component of cashmere fibre, and variation in some KAP genes (KRTAPs) has been associated with a number of caprine fibre traits. In this study, we report the identification of KRTAP15-1 in goats. Sequence variation in the gene was detected using the polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) technique in 250 Longdong goats, and six variants (named A to F) containing eight single nucleotide polymorphisms (SNPs) were identified. Five of the SNPs were non-synonymous and would lead to putative amino acid changes. Reverse-transcription polymerase chain reaction (RT-PCR) analysis revealed that KRTAP15-1 was expressed in secondary hair follicles but not in heart tissue, liver tissue, lung tissue, kidney tissue or the longissimus dorsi muscle. Despite being rich in cysteine, the caprine KAP15-1 protein possesses a high content of serine and moderate content of glycine and phenylalanine. Association analyses revealed that KRTAP15-1 variant A was associated with decreased mean fibre diameter (MFD), and this effect appeared to be dominant; while variant C was found to be associated with increased MFD, the effect being recessive. The findings suggest that caprine KRTAP15-1 is highly polymorphic and that variation in this gene affects cashmere MFD.

18.
Genes (Basel) ; 10(11)2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717789

RESUMO

The keratin-associated proteins (KAPs) are structural components of hair/wool fibres. All of the KAPs identified to date contain cysteine, which is thought to form disulphide bonds cross-linking the keratin intermediate filaments. Here, we report the identification of a KAP gene in sheep that would produce a protein that contains a high proportion (63.2 mol%) of glycine and tyrosine, but would not contain any cysteine. This suggests that other forms of intra- and inter-strand interaction may occur with this KAP, such as interactions via ring-stacking and hydrogen-bonding. The gene was dissimilar to any previously reported KAP gene, and was therefore assigned to a new family, and named KRTAP36-1. The KRTAP36-1 genome sequence was almost identical to some EST sequences from sheep and goat skin follicles, suggesting that it is present and expressed in sheep and goats. A BLAST search of the human genome assembly sequence did not reveal any human homologue. Three variant sequences (named A to C) of ovine KRTAP36-1 were identified and four single nucleotide polymorphisms (SNPs) were detected. One SNP was located 32 bp upstream of the coding region, and all of the others were in the coding region and were nonsynonymous. After correcting for potential linkage to the proximal KRTAP20-1, variant B of KRTAP36-1 was found to be associated with increased prickle factor (PF) in wool, suggesting that variation in the gene may have the potential to be used as gene marker for breeding sheep with lower PF.


Assuntos
Queratinas/genética , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Lã/química , Substituição de Aminoácidos , Animais , Cisteína/genética , Feminino , Glicina/genética , Ligação de Hidrogênio , Queratinas/química , Domínios Proteicos , Tirosina/genética , Fibra de Lã/normas
19.
Cell Cycle ; 18(24): 3525-3539, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31736412

RESUMO

Background: Circular RNAs (circRNAs) play a pivotal regulatory role in a variety of tumors.Nevertheless, the detailed function of circ_0000003 in non-small cell lung cancer (NSCLC) and its regulatory mechanism remain elusive.Methods: RT-PCR was carried out to detect the expressions of circ_0000003, miR-338-3p and insulin receptor substrate 2 (IRS2)in NSCLC tissues. Besides, western blot was done to monitor IRS2 expression in NSCLC cells. The correlation between circ_0000003 and clinicopathologic characteristics of NSCLC patients was analyzed as well.CCK8 and BrdUassays were used to monitor cell proliferation; flow cytometry was used to detect apoptosis; and transwell assay was conducted to detect its migration and invasion.Moreover, dual luciferase reporter gene assay was done to verify the targeting relationship between circ_0000003 and miR-338-3p.Additionally, the effect of circ_0000003 on the growth of NSCLC cells in vivo was evaluated by tumorigenesis assay in nude mice.Results: The expression of circ_0000003 was significantly high in NSCLC tissues and cell lines, and its high expression level was notably correlated with lymph node metastasis andTNM staging.In vitro experiments showed that overexpression of circ_0000003 facilitated the proliferation, migration, invasion and inhibited the apoptosis of NSCLC cells, while the knockdown of circ_0000003 had the opposite effect.In vivo experiments revealed that knockdown of circ_0000003 impeded tumor growth and metastasis. Further, the underlying mechanism showed that circ_0000003 functioned as endogenous competitive RNA and directly targeted miR-338-3p to positively regulated IRS2 expression.Conclusion: Circ_0000003 promotes the proliferation and metastasis of NSCLC cells via modulating miR-338-3p/IRS2 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/genética , RNA Circular/genética , Animais , Apoptose/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias
20.
Genes (Basel) ; 10(10)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597369

RESUMO

The mammary gland is a crucial tissue for milk synthesis and plays a critical role in the feeding and growth of mammalian offspring. The aim of this study was to use RNA-sequencing (RNA-Seq) technology to provide a transcriptome profile of the ovine mammary gland at the peak of lactation. Small-Tailed Han (STH) sheep (n = 9) and Gansu Alpine Merino (GAM) sheep (n = 9), breeds with phenotypic differences in milk production traits, were selected for the RNA-Seq analysis. This revealed 74 genes that were more highly expressed in the STHs than in the GAMs. Similarly, 143 genes that were expressed at lower levels in the STHs than in the GAMs, were identified. Gene ontogeny (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these differentially expressed genes (DEGs) were associated with binding and catalytic activities, hematopoietic cell lineages, oxytocin signaling pathway and neuroactive ligand-receptor interaction. This is the first study of the transcriptome profile of the ovine mammary gland in these Chinese breeds at peak lactation. The results provide for a better understanding of the genetic mechanisms involved in ovine lactation.


Assuntos
Lactação/genética , Glândulas Mamárias Animais/metabolismo , Ovinos/genética , Animais , Cruzamento/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Glândulas Mamárias Animais/patologia , Fenótipo , Análise de Sequência de RNA , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA