Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133373, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159520

RESUMO

The adhesion of high-viscosity oil contamination poses limitations on three-dimensional (3D) materials' practical use in treating oilfield-produced water (OPW). In this study, we developed a hybrid pDA/TiO2/SiO2 coating (PTS) on the surface of hydrophilic activated carbon (ACF1) through a combination of dopamine (DA) polymerization, ethyl orthosilicate (TEOS) hydrolysis, and the condensation of TiO2 nanoparticles (NPs) with SiO2 NPs. This coating was designed for gravity-based oil-water separation. The inherent porosity and generous pore size of ACF1-PTS conferred it an ultra-high permeation flux (pure water flux of 3.72 × 105 L∙m-2∙h-1), allowing it to effectively separate simulated oil-water mixtures and oil-water emulsions while maintaining exceptional permeation flux and oil rejection efficiency. When compared to cleaning methods involving ethanol aqueous solutions and NaClO, ultraviolet (UV) illumination cleaning proved superior, enabling oil-contaminated ACF1-PTS to exhibit remarkable flux recovery efficiency and oil-removal capabilities during cyclic separation of actual OPW. Furthermore, the ACF1-PTS material demonstrated impressive stability and durability when exposed to acidic environments (acid, alkali, and salt), robust hydraulic washout conditions, and 25-cycle tests. This study offers valuable insights and research avenues for the development of highly efficient and environmentally friendly 3D oil-water separation materials for the actual treatment of OPW.

2.
Genome Biol ; 23(1): 51, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139891

RESUMO

BACKGROUND: The high-activity adenine base editors (ABEs), engineered with the recently-developed tRNA adenosine deaminases (TadA8e and TadA9), show robust base editing activity but raise concerns about off-target effects. RESULTS: In this study, we perform a comprehensive evaluation of ABE8e- and ABE9-induced DNA and RNA mutations in Oryza sativa. Whole-genome sequencing analysis of plants transformed with four ABEs, including SpCas9n-TadA8e, SpCas9n-TadA9, SpCas9n-NG-TadA8e, and SpCas9n-NG-TadA9, reveal that ABEs harboring TadA9 lead to a higher number of off-target A-to-G (A>G) single-nucleotide variants (SNVs), and that those harboring CRISPR/SpCas9n-NG lead to a higher total number of off-target SNVs in the rice genome. An analysis of the T-DNAs carrying the ABEs indicates that the on-target mutations could be introduced before and/or after T-DNA integration into plant genomes, with more off-target A>G SNVs forming after the ABEs had integrated into the genome. Furthermore, we detect off-target A>G RNA mutations in plants with high expression of ABEs but not in plants with low expression of ABEs. The off-target A>G RNA mutations tend to cluster, while off-target A>G DNA mutations rarely clustered. CONCLUSION: Our findings that Cas proteins, TadA variants, temporal expression of ABEs, and expression levels of ABEs contribute to ABE specificity in rice provide insight into the specificity of ABEs and suggest alternative ways to increase ABE specificity besides engineering TadA variants.


Assuntos
Adenina , Edição de Genes , Adenina/metabolismo , Sistemas CRISPR-Cas , Genoma de Planta , Mutação , Transcriptoma
3.
Mol Plant ; 14(5): 722-731, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33631420

RESUMO

Recently reported adenine base editors (ABEs) exhibit powerful potential for targeted gene correction as well as developing gain-of-function mutants and novel germplasms for both gene function studies and crop breeding. However, editing efficiency varies significantly among different target sites. Here, we investigated the activities of three evolved E. coli adenosine deaminase TadA variants (TadA8e, TadA8.17, and TadA8.20) side-by-side in transgenic rice. We found that TadA8e outperforms TadA8.17 and TadA8.20, and induces efficient A-to-G conversion at all tested sites in the rice genome, including those that were uneditable by ABE7.10 in our previous experiments. Furthermore, V82S/Q154R mutations were incorporated into TadA8e, resulting in a new variant that we named TadA9. Our data show that TadA9 is broadly compatible with CRISPR/SpCas9, CRISPR/SpCas9-NG, and CRISPR/SpRY, as well as CRISPR/ScCas9 nickase systems, achieving comparable or enhanced editing in a larger editing window at diverse PAM sites as compared with TadA8e. Finally, TadA9 was used to simultaneously install novel SNPs in four endogenous herbicide target genes in the commercial rice cultivar Nangeng 46 for potential field application in weed control. Collectively, we successfully generated a series of novel ABEs that can efficiently edit adenosines in the rice genome. Our findings suggest that TadA9 and TadA8e have great potentials in the development of plant base editors and crop molecular breeding.


Assuntos
Adenina/metabolismo , Adenosina Desaminase/genética , Proteínas de Escherichia coli/genética , Edição de Genes , Mutação/genética , Oryza/genética , Proteínas Associadas a CRISPR/metabolismo , Genoma de Planta , Plantas Geneticamente Modificadas
4.
PLoS Genet ; 10(7): e1004446, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992598

RESUMO

RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.


Assuntos
Metilação de DNA/genética , DNA Topoisomerases Tipo I/genética , Elementos de DNA Transponíveis/genética , Epigênese Genética , Transcrição Gênica , Arabidopsis/genética , DNA Topoisomerases Tipo I/metabolismo , Inativação Gênica , Histonas/genética , Lisina/genética , Mutação , RNA/genética , RNA Longo não Codificante/genética
5.
Plant J ; 52(3): 420-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17764502

RESUMO

Considerable progress has been made in understanding the function of receptor-like kinase (RLK) genes in model plants. However, much less is known about these genes in crop species. Here we report the characterization of three new wheat RLK genes (TaRLK-R1, 2 and 3). The primary structure of the putative proteins TaRLK-R1, 2 and 3 contained a signal peptide, a cysteine-rich extracellular domain, a transmembrane domain, and a predicted intracellular kinase domain. The fusions between TaRLK-R1, 2 or 3 and the green fluorescence protein (GFP) were targeted to the plasma membrane; such targeting required the signal peptide, extracellular domain and transmembrane domain. Transcription of TaRLK-R1, 2 and 3 was found mainly in the green organs, and was regulated by light. Transcript levels of TaRLK-R1, 2 and 3 increased during the hypersensitive reaction (HR) to stripe rust fungus. In addition, the TaRLK-R3 transcript level was also upregulated by abiotic stresses. Further experiments revealed that the recombinant kinase domain of TaRLK-R3 exhibited auto-phosphorylation activity in vitro. Knocking down the transcript levels of TaRLK-R1, 2 or 3 individually or all together by virus-induced gene silencing compromised the wheat HR to stripe rust fungus. The demonstration of TaRLK-R1, 2 and 3 as positive contributors in the wheat HR to stripe rust fungus suggests a new direction for further functional studies of this important family of RLK genes, and may facilitate the breeding of wheat varieties resistant to stripe rust disease.


Assuntos
Basidiomycota , Genes de Plantas , Fosfotransferases/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Triticum/genética , Sequência de Aminoácidos , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/imunologia , Inativação Gênica , Imunidade Inata , Luz , Dados de Sequência Molecular , Pressão Osmótica , Estresse Oxidativo , Fosforilação , Fosfotransferases/química , Fosfotransferases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transcrição Gênica , Triticum/enzimologia , Triticum/imunologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA