Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1174-1181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720073

RESUMO

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Assuntos
Fosfotirosina , Proteínas Tirosina Quinases , Especificidade por Substrato , Tirosina , Animais , Humanos , Motivos de Aminoácidos , Evolução Molecular , Espectrometria de Massas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Domínios de Homologia de src , Tirosina/metabolismo , Tirosina/química
2.
EBioMedicine ; 86: 104373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36442320

RESUMO

BACKGROUND: There is significant interest in treatment de-escalation for human papillomavirus-associated (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) patients given the generally favourable prognosis. However, 15-30% of patients recur after primary treatment, reflecting a need for improved risk-stratification tools. We sought to develop a molecular test to risk stratify HPV+ OPSCC patients. METHODS: We created an immune score (UWO3) associated with survival outcomes in six independent cohorts comprising 906 patients, including blinded retrospective and prospective external validations. Two aggressive radiation de-escalation cohorts were used to assess the ability of UWO3 to identify patients who recur. Multivariate Cox models were used to assess the associations between the UWO3 immune class and outcomes. FINDINGS: A three-gene immune score classified patients into three immune classes (immune rich, mixed, or immune desert) and was strongly associated with disease-free survival in six datasets, including large retrospective and prospective datasets. Pooled analysis demonstrated that the immune rich group had superior disease-free survival compared to the immune desert (HR = 9.0, 95% CI: 3.2-25.5, P = 3.6 × 10-5) and mixed (HR = 6.4, 95% CI: 2.2-18.7, P = 0.006) groups after adjusting for age, sex, smoking status, and AJCC8 clinical stage. Finally, UWO3 was able to identify patients from two small treatment de-escalation cohorts who remain disease-free after aggressive de-escalation to 30 Gy radiation. INTERPRETATION: With additional prospective validation, the UWO3 score could enable biomarker-driven clinical decision-making for patients with HPV+ OPSCC based on robust outcome prediction across six independent cohorts. Prospective de-escalation and intensification clinical trials are currently being planned. FUNDING: CIHR, European Union, and the NIH.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/complicações , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Orofaríngeas/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Biomarcadores , Papillomavirus Humano , Papillomaviridae
3.
J Biol Chem ; 297(4): 101161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480897

RESUMO

Cell migration is an essential physiological process, and aberrant migration of epithelial cells underlies many pathological conditions. However, the molecular mechanisms governing cell migration are not fully understood. We report here that growth factor-induced epithelial cell migration is critically dependent on the crosstalk of two molecular switches, namely phosphorylation switch (P-switch) and transcriptional switch (T-switch). P-switch refers to dynamic interactions of deleted in liver cancer 1 (DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin homolog (PTEN), C-terminal tension, and vav guanine nucleotide exchange factor 2 (VAV2) that are dictated by mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2-dependent phosphorylation of TNS3, PTEN, and VAV2. Phosphorylation of TNS3 and PTEN on specific Thr residues led to the switch of DLC1-TNS3 and PI3K-PTEN complexes to DLC1-PTEN and PI3K-TNS3 complexes, whereas Ser phosphorylation of VAV2 promotes the transition of the PI3K-TNS3/PTEN complexes to PI3K-VAV2 complex. T-switch denotes an increase in C-terminal tension transcription/expression regulated by both extracellular signal-regulated protein kinase 1/2 and signal transducer and activator of transcription 3 (STAT3) via interleukin-6-Janus kinase-STAT3 signaling pathway. We have found that, the P-switch is indispensable for both the initiation and continuation of cell migration induced by growth factors, whereas the T-switch is only required to sustain cell migration. The interplay of the two switches facilitated by the interleukin-6-Janus kinase-STAT3 pathway governs a sequence of dynamic protein-protein interactions for sustained cell migration. That a similar mechanism is employed by both normal and tumorigenic epithelial cells to drive their respective migration suggests that the P-switch and T-switch are general regulators of epithelial cell migration and potential therapeutic targets.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Cell Rep ; 32(2): 107896, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668242

RESUMO

Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Diferenciação Celular , Desmetilação , Feminino , Histonas/química , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Metilação , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/citologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Software , Especificidade por Substrato
6.
Mol Cell Proteomics ; 18(2): 372-382, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30482845

RESUMO

Src homology 2 (SH2) domains play an essential role in cellular signal transduction by binding to proteins phosphorylated on Tyr residue. Although Tyr phosphorylation (pY) is a prerequisite for binding for essentially all SH2 domains characterized to date, different SH2 domains prefer specific sequence motifs C-terminal to the pY residue. Because all SH2 domains adopt the same structural fold, it is not well understood how different SH2 domains have acquired the ability to recognize distinct sequence motifs. We have shown previously that the EF and BG loops that connect the secondary structure elements on an SH2 domain dictate its specificity. In this study, we investigated if these surface loops could be engineered to encode diverse specificities. By characterizing a group of SH2 variants selected by different pY peptides from phage-displayed libraries, we show that the EF and BG loops of the Fyn SH2 domain can encode a wide spectrum of specificities, including all three major specificity classes (p + 2, p + 3 and p + 4) of the SH2 domain family. Furthermore, we found that the specificity of a given variant correlates with the sequence feature of the bait peptide used for its isolation, suggesting that an SH2 domain may acquire specificity by co-evolving with its ligand. Intriguingly, we found that the SH2 variants can employ a variety of different mechanisms to confer the same specificity, suggesting the EF and BG loops are highly flexible and adaptable. Our work provides a plausible mechanism for the SH2 domain to acquire the wide spectrum of specificity observed in nature through loop variation with minimal disturbance to the SH2 fold. It is likely that similar mechanisms may have been employed by other modular interaction domains to generate diversity in specificity.


Assuntos
Proteínas Proto-Oncogênicas c-fyn/química , Animais , Cristalografia por Raios X , Variação Genética , Humanos , Ligantes , Modelos Moleculares , Biblioteca de Peptídeos , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-fyn/genética , Domínios de Homologia de src
7.
J Biol Chem ; 293(27): 10744-10756, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773654

RESUMO

The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.


Assuntos
Código Genético , Imagem Molecular/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Células Cultivadas , Cristalografia por Raios X , Humanos , Mutação , Fosforilação , Conformação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Serina/química , Serina/genética , Treonina/química , Treonina/genética
8.
Mol Cell Proteomics ; 17(11): 2216-2228, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29217616

RESUMO

Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Quinases/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Genoma Humano , Humanos , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes , Transdução de Sinais
9.
Am J Pathol ; 188(1): 111-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037858

RESUMO

Insulin-like growth factor binding protein (IGFBP)-1 influences fetal growth by modifying insulin-like growth factor-I (IGF-I) bioavailability. IGFBP-1 phosphorylation, which markedly increases its affinity for IGF-I, is regulated by mechanistic target of rapamycin (mTOR) and casein kinase (CSNK)-2. However, the underlying molecular mechanisms remain unknown. We examined the cellular localization and potential interactions of IGFBP-1, CSNK-2ß, and mTOR as a prerequisite for protein-protein interaction. Analysis of dual immunofluorescence images indicated a potential perinuclear co-localization between IGFBP-1 and CSNK-2ß and a nuclear co-localization between CSNK-2ß and mTOR. Proximity ligation assay (PLA) indicated proximity between IGFBP-1 and CSNK-2ß as well as mTOR and CSNK-2ß but not between mTOR and IGFBP-1. Three-dimensional rendering of the PLA images validated that IGFBP-1 and CSNK-2ß interactions were in the perinuclear region and mTOR and CSNK-2ß interactions were also predominantly perinuclear rather than nuclear as indicated by mTOR and CSNK-2ß co-localization. Compared with control, hypoxia and rapamycin treatment showed markedly amplified PLA signals for IGFBP-1 and CSNK-2ß (approximately 18-fold, P = 0.0002). Stable isotope labeling with multiple reaction monitoring-mass spectrometry demonstrated that hypoxia and rapamycin treatment increased IGFBP-1 phosphorylation at Ser98/Ser101/Ser119/Ser174 but most considerably (106-fold) at Ser169. We report interactions between CSNK-2ß and IGFBP-1 as well as mTOR and CSNK-2ß, providing strong evidence of a mechanistic link between mTOR and IGF-I signaling, two critical regulators of cell growth via CSNK-2.


Assuntos
Carcinoma Hepatocelular/metabolismo , Caseína Quinase II/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carcinoma Hepatocelular/patologia , Imunofluorescência , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosforilação , Transdução de Sinais/fisiologia
10.
Anal Chem ; 89(4): 2405-2410, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192900

RESUMO

Tyrosine phosphorylation (pTyr) is important for normal physiology and implicated in many human diseases, particularly cancer. Identification of pTyr sites is critical to dissecting signaling pathways and understanding disease pathologies. However, compared with serine/threonine phosphorylation (pSer/pThr), the analysis of pTyr at the proteome level is more challenging due to its low abundance. Here, we developed a biphasic affinity chromatographic approach where Src SH2 superbinder was coupled with NeutrAvidin affinity chromatography, for tyrosine phosphoproteome analysis. With the use of competitive elution agent biotin-pYEEI, this strategy can distinguish high-affinity phosphotyrosyl peptides from low-affinity ones, while the excess competitive agent is readily removed by using NeutrAvidin agarose resin in an integrated tip system. The excellent performance of this system was demonstrated by analyzing tyrosine phosphoproteome of Jurkat cells from which 3,480 unique pTyr sites were identified. The biphasic affinity chromatography method for deep Tyr phosphoproteome analysis is rapid, sensitive, robust, and cost-effective. It is widely applicable to the global analysis of the tyrosine phosphoproteome associated with tyrosine kinase signal transduction.


Assuntos
Cromatografia de Afinidade/métodos , Fosfopeptídeos/análise , Proteoma/análise , Avidina/química , Avidina/metabolismo , Humanos , Células Jurkat , Fosfopeptídeos/isolamento & purificação , Fosforilação , Proteoma/metabolismo , Tirosina/metabolismo , Domínios de Homologia de src
11.
Nat Chem Biol ; 12(11): 959-966, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27642862

RESUMO

We present a new strategy for systematic identification of phosphotyrosine (pTyr) by affinity purification mass spectrometry (AP-MS) using a Src homology 2 (SH2)-domain-derived pTyr superbinder as the affinity reagent. The superbinder allows for markedly deeper coverage of the Tyr phosphoproteome than anti-pTyr antibodies when an optimal amount is used. We identified ∼20,000 distinct phosphotyrosyl peptides and >10,000 pTyr sites, of which 36% were 'novel', from nine human cell lines using the superbinder approach. Tyrosine kinases, SH2 domains and phosphotyrosine phosphatases were preferably phosphorylated, suggesting that the toolkit of kinase signaling is subject to intensive regulation by phosphorylation. Cell-type-specific global kinase activation patterns inferred from label-free quantitation of Tyr phosphorylation guided the design of experiments to inhibit cancer cell proliferation by blocking the highly activated tyrosine kinases. Therefore, the superbinder is a highly efficient and cost-effective alternative to conventional antibodies for systematic and quantitative characterization of the tyrosine phosphoproteome under normal or pathological conditions.


Assuntos
Fosfotirosina/metabolismo , Proteômica , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Fosforilação , Fosfotirosina/química , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src
12.
Biochim Biophys Acta ; 1812(6): 703-10, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21397687

RESUMO

A distinct feature of hepatocellular carcinoma (HCC) is the tendency of tumor cells to disperse throughout the liver. Nck family adaptor proteins function to couple tyrosine phosphorylation signals to regulate actin cytoskeletal reorganization that leads to cell motility. In order to explore the role of Nck in HCC development, we performed GST pull-down assay using the SH2 domain of Nck1 as bait. The resulting precipitates were separated by 2-DE. Mass spectrometry analysis revealed a group of Nck1 SH2 domain-binding proteins that were differentially expressed in HCC. One of these proteins, dermcidin (DCD), and its interaction with Nck1, was further validated in vitro. GST pull-down assay revealed that Nck1 SH2 domain binds to the phosphotyrosine residue at position 20 (Y20) of the DCD. Pervandate treatment significantly enhanced the interaction between DCD and Nck1. Moreover, we demonstrated that forced expression of DCD could activate Rac1 and Cdc42 and promoted cell migration. Taken together, these data suggest a role of DCD in tumor metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Neoplasias Hepáticas/patologia , Proteínas Oncogênicas/metabolismo , Peptídeos/fisiologia , Adulto , Idoso , Carcinoma Hepatocelular/química , Linhagem Celular Tumoral , Feminino , Humanos , Fígado/química , Neoplasias Hepáticas/química , Masculino , Pessoa de Meia-Idade , Peptídeos/análise , Fosforilação , Ligação Proteica , Proteômica , Tirosina/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Domínios de Homologia de src
13.
Cell Adh Migr ; 4(2): 176-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20168079

RESUMO

Epithelial to mesenchymal transition (EMT) is a critical event in embryogenesis and plays a fundamental role in cancer progression and metastasis. Numb has been shown to play an important role in the proper functions of Par protein complex and in cell-cell junctions, both of which are associated with EMT. However, the role of Numb in EMT has not been fully elucidated. Recently, we showed that Numb is capable of binding to both Par3 and E-cadherin. Intriguingly, the interaction of Numb with E-cadherin or the Par protein complex is dynamically regulated by tyrosine phosphorylation induced by HGF or Src. Knockdown of Numb by shRNA in MDCK cells led to a lateral to apical translocation of E-cadherin and beta-catenin, active F-actin polymerization, mis-localization of Par3 and aPKC, a decrease in cell-cell adhesion and an increase in cell migration and proliferation. These data suggest a diverse role for Numb in regulating cell-cell adhesion, polarity and migration during EMT.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Polaridade Celular/genética , Polaridade Celular/fisiologia , Cães , Humanos , Proteínas de Membrana/genética
14.
Methods Mol Biol ; 570: 67-76, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19649589

RESUMO

Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.


Assuntos
Motivos de Aminoácidos , Peptídeos/análise , Análise Serial de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas/métodos , Animais , Humanos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Mapeamento de Peptídeos/métodos , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica
15.
Methods Mol Biol ; 570: 197-202, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19649594

RESUMO

Peptide arrays differ from conventional peptide synthesis in that hundreds upon thousands of peptides are synthesized and presented on a planar surface at a time. While direct synthesis of peptide arrays on a functionalized surface is feasible, reprinting of pre-made peptides offers flexibility and reproducibility and drastically reduces cost when multiple copies of the same or related peptide arrays are needed. CelluSpot, a method developed by Intavis, opens a new route in peptide array synthesis and printing and overcomes certain limitations of the SPOT membrane. This technique was used to produce hundreds of phosphotyrosine-oriented peptide array libraries for determining the specificity of the Src homology 2 (SH2) domain.


Assuntos
Celulose , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Domínios de Homologia de src , Animais , Celulose/metabolismo , Humanos , Membranas Artificiais , Peptídeos/análise , Peptídeos/síntese química , Peptídeos/farmacocinética , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Especificidade por Substrato
16.
Cell Signal ; 21(4): 540-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19150402

RESUMO

The signaling lymphocyte activation molecule (SLAM)-associated protein (SAP or SH2D1A) is an important regulator of immune function which, when mutated or deleted, causes the X-linked lymphoproliferative syndrome (XLP). Because B cell lymphoma is a major phenotype of XLP, it is important to understand the function of SAP in B cells. Here we report that SAP is expressed endogenously in mouse splenic B cells, is inducibly expressed in the human BJAB cells, and co-localizes and interacts with CD22. We also show that SAP binding to the inhibitory immunoreceptor CD22 regulates calcium mobilization in B cells. Moreover, forced expression of SAP leads to constitutive CD22 tyrosine phosphorylation and decreased Ca(2+) response in B cells. Biochemical analysis reveals that, in response to IgM cross-linking, the phosphorylation of Syk, Blnk, or PLCgamma2 and their interactions with one another were either diminished or completely abolished in SAP-expressing cells compared to cells that lack SAP. Collectively our work identifies a novel role for SAP in B cells and extends its function to inhibitory immunoreceptor signaling and calcium mobilization.


Assuntos
Linfócitos B/metabolismo , Sinalização do Cálcio/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Motivos de Aminoácidos , Animais , Linfócitos B/virologia , Linfoma de Burkitt/patologia , Cisplatino/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Humanos , Imunoglobulina M/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia
17.
Front Biosci ; 13: 4938-52, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508559

RESUMO

Src homology 3 (SH3) domains were initially characterized as a prevalent protein module that recognizes proline-rich sequences, in particular those containing a PxxP motif. Recent studies have shown that the specificity and cellular function of SH3 domains are far more diverse than previously appreciated. Despite lacking distinguishing features, the ligand-binding surface of an SH3 domain can be molded to accommodate a variety of peptide ligands. Moreover, certain SH3 domains are capable of using surfaces distinct from the canonical ligand-binding site to engage a peptide or protein. The identification of novel motifs and domains recognized by the SH3 domain greatly expands the ligand pool and cellular function for this family. However, this also imposes the question as to how the specificity of the hundreds of human SH3 domains is regulated in a cell to ensure their proper functions. Here we review literature on the specificity of SH3 domains, with an emphasis on the structural basis of ligand recognition, and discuss mechanisms employed by SH3 domain-containing proteins to execute defined cellular functions through highly regulated SH3-ligand interactions.


Assuntos
Peptídeos/química , Peptídeos/fisiologia , Proteínas/química , Proteínas/fisiologia , Domínios de Homologia de src/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Ligantes , Especificidade por Substrato
18.
Nucleic Acids Res ; 36(10): 3263-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424801

RESUMO

Systematic identification of binding partners for modular domains such as Src homology 2 (SH2) is important for understanding the biological function of the corresponding SH2 proteins. We have developed a worldwide web-accessible computer program dubbed SMALI for scoring matrix-assisted ligand identification for SH2 domains and other signaling modules. The current version of SMALI harbors 76 unique scoring matrices for SH2 domains derived from screening oriented peptide array libraries. These scoring matrices are used to search a protein database for short peptides preferred by an SH2 domain. An experimentally determined cut-off value is used to normalize an SMALI score, therefore allowing for direct comparison in peptide-binding potential for different SH2 domains. SMALI employs distinct scoring matrices from Scansite, a popular motif-scanning program. Moreover, SMALI contains built-in filters for phosphoproteins, Gene Ontology (GO) correlation and colocalization of subject and query proteins. Compared to Scansite, SMALI exhibited improved accuracy in identifying binding peptides for SH2 domains. Applying SMALI to a group of SH2 domains identified hundreds of interactions that overlap significantly with known networks mediated by the corresponding SH2 proteins, suggesting SMALI is a useful tool for facile identification of signaling networks mediated by modular domains that recognize short linear peptide motifs.


Assuntos
Fosfotirosina/metabolismo , Transdução de Sinais , Software , Domínios de Homologia de src , Biologia Computacional , Humanos , Ligantes , Peptídeos/química , Análise Serial de Proteínas
19.
Mol Cell Biol ; 28(6): 2035-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18212058

RESUMO

We have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization. Any one of three phosphorylated (p)YDXV motifs on nephrin is sufficient to recruit Nck through its Src homology 2 (SH2) domain and induce localized actin polymerization at these clusters. Similarly, Nck SH3 mutants in which only the second or third SH3 domain is functional can mediate nephrin-induced actin polymerization. However, combining such nephrin and Nck mutants attenuates actin polymerization at nephrin-Nck clusters. We propose that the multiple Nck SH2-binding motifs on nephrin and the multiple SH3 domains of Nck act cooperatively to recruit the high local concentration of effectors at sites of nephrin activation that is required to initiate and maintain actin polymerization in vivo. We also find that YDXV motifs in the Tir protein of enteropathogenic Escherichia coli and nephrin are functionally interchangeable, indicating that Tir reorganizes the actin cytoskeleton by molecular mimicry of nephrin-like signaling. Together, these data identify pYDXV/Nck signaling as a potent and portable mechanism for physiological and pathological actin regulation.


Assuntos
Actinas/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Oncogênicas/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biopolímeros , Células Cultivadas/metabolismo , Células Cultivadas/ultraestrutura , Citoesqueleto/ultraestrutura , Proteínas de Escherichia coli/química , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas/química , Fosforilação , Mapeamento de Interação de Proteínas , Receptores de Superfície Celular/química , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Domínios de Homologia de src
20.
Mol Cell Proteomics ; 7(4): 768-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17956856

RESUMO

Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.


Assuntos
Fosfopeptídeos/química , Fosfotirosina/análise , Proteoma/química , Domínios de Homologia de src , Motivos de Aminoácidos , Clonagem Molecular , Genoma Humano , Humanos , Proteoma/genética , Domínios de Homologia de src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA