Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416350

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that Figs. 1C and 2 in the paper appeared to contain instances of duplicated data. The authors were able to consult their original data files, and realized that these figures had indeed been assembled incorrectly. Moreover, they identified further errors with a number of the other figures in their published formats (specifically, Figs. 3, 4, 6 and 7), and requested that a corrigendum be published to take account of all the errors that were made during the compilation of these figures. The Editor of International Journal of Molecular Medicine has considered the authors' request to publish a corrigendum, but has declined this request on account of the large number of errors that have been identified, and subsequently determined that this article should be retracted from the Journal on the basis of an overall lack of confidence in the presented data. Upon receiving this decision from the Editor, the authors were in agreement that the article should be retracted. The Editor apologizes to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 39: 527­538, 2017; DOI: 10.3892/ijmm.2017.2880].

2.
Appl Microbiol Biotechnol ; 105(18): 6871-6886, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477940

RESUMO

Aspergillus flavus is a notorious saprophytic fungus that compromises the quantity and quality of postharvest grains and produces carcinogenic aflatoxins. The natural compound hexanal disrupts cell membrane synthesis and mitochondrial function and induces apoptosis in A. flavus; here, we investigated the molecular mechanisms underlying these effects. The minimum inhibition and fungicidal concentration (MIC and MFC) of hexanal against A. flavus spores were 3.2 and 9.6 µL/mL, respectively. Hexanal exposure resulted in abnormal spore morphology and early spore apoptosis. These changes were accompanied by increased reactive oxygen species production, reduced mitochondrial membrane potential, and DNA fragmentation. Transcriptomic analysis revealed that hexanal treatment greatly altered the metabolism of A. flavus spores, including membrane permeability, mitochondrial function, energy metabolism, DNA replication, oxidative stress, and autophagy. This study provides novel insights into the mechanism underlying the antifungal activity of hexanal, suggesting that hexanal can be used an anti-A. flavus agent for agricultural applications. KEY POINTS: • Hexanal exposure resulted in abnormal spore morphology. • The apoptotic characteristics of A. flavus were induced after hexanal treatment. • Hexanal could change the expression of key A. flavus growth-related genes.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Aldeídos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Apoptose , Mitocôndrias , Esporos Fúngicos/metabolismo
3.
Curr Med Sci ; 38(2): 268-276, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30074185

RESUMO

The relationship between the levels of renalase and changes in proteinuria, hypertension, renal function, renal tubular epithelial cell apoptosis and B-cell lymphoma-2 (Bcl-2) expression was investigated in patients (chronic nephritis, primary nephrotic syndrome or other kidney disease) that underwent renal biopsy. The study group comprised 72 patients undergoing renal biopsy. Patient profiles and renal function were collected. Concentrations of renalase and Bcl-2 were measured by immunohistochemistry. Tubular injury was detected by periodic acid Schiff staining (PAS) and renal tubular epithelial cell apoptosis was assessed by TUNEL assay. The expression of renalase was significantly lower in renal biopsy specimens than in normal kidney tissues. There was a positive linear relationship between renalase and some serum and cardiac indices; a negative correlation was found between age, eGFR, Ccr and 24-h urinary protein. Renal tubule injury index and tubular epithelial cell apoptosis index showed a negative linear correlation with renalase. The results showed that renalase probably increased the expression of Bcl-2. By two independent samples t-test, renalase levels were significantly increased in the non-hypertension group than in the hypertension group. One-way ANOVA showed that renalase expression was higher in samples with Lee's grade III than in those with Lee's grade V. The expression of renalase was significantly decreased in patients who underwent renal biopsy, and was also associated with blood and renal function. The research proved that renalase may reduce renal tubular injury and apoptosis of renal tubular epithelial cells through the mitochondrial apoptosis pathway, finally achieving the purpose of delaying the progress of renal failure.


Assuntos
Nefropatias/enzimologia , Rim/enzimologia , Rim/patologia , Monoaminoxidase/metabolismo , Adulto , Apoptose , Biópsia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Humanos , Hipertensão/complicações , Imunoglobulina A/metabolismo , Rim/cirurgia , Nefropatias/complicações , Nefropatias/patologia , Nefropatias/cirurgia , Túbulos Renais/patologia , Masculino , Nefrectomia
4.
Med Sci Monit ; 23: 4132-4140, 2017 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-28844074

RESUMO

BACKGROUND Leptocarpin (LTC) has drawn much attention for suppressing tumor growth or reducing inflammation. However, the effect of LTC on osteosarcoma has rarely been reported. Our object was to determine whether LTC suppresses MG63 cell proliferation, migration, and invasion, and whether type-1 insulin-like growth factor receptor (IGF-1R) is one of the targets in LTC suppressing osteosarcoma. MATERIAL AND METHODS Cytotoxicity of LTC was performed by use of a cell-counting kit-8 (CCK-8). RNA interference (RNAi) or pEABE-bleo IGF-1R plasmid were used for silencing or overexpressing IGF-1R, Western blot (WB) analysis was used for IGF-1R expression, CCK-8 for proliferation, and transwell assay for migration and invasion. RESULTS LTC (23.533 µM) treatment for 48 h was taken as the 50% inhibiting concentration (IC50), which significantly (P<0.05) suppressed MG63 cells proliferation, migration, and invasion. LTC (IC50) obviously inhibited IGF-1R expression in MG63 cells, with similar effect to small interfering RNA (siRNA), while pEABE-bleo IGF-1R transfection overexpressed IGF-1R. siRNA silencing IGF-1R suppressed MG63 cells proliferation, migration, and invasion, while pEABE-bleo IGF-1R transfection was significantly (P<0.05) promoted. With or without siRNA or pEABE-bleo IGF-1R transfection, LTC (IC50) suppressed MG63 cells proliferation, migration, and invasion. The effect of LTC (IC50) combined with siRNA on suppressing MG63 cells proliferation, migration, and invasion was more obvious, while the effect of LTC (IC50) combined with pEABE-bleo IGF-1R transfection was less significant (P<0.05). CONCLUSIONS LTC suppressed osteosarcoma proliferation, migration, and invasion by inhibiting IGF-1R expression. IGF-1R is one of the targets in LTC suppressing osteosarcoma.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Receptores de Somatomedina/antagonistas & inibidores , Sesquiterpenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais
5.
Int J Mol Med ; 39(3): 527-538, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28204811

RESUMO

Osteoporosis (OP) increases the risk of bone fractures and other complications, and is thus a major clinical problem. In this study, we examined the effect of isopsoralen on the differentiation of bone-derived marrow mesenchymal stem cells (BMSCs) into osteoblasts and adipocytes, as well as bone formation under osteoporotic conditions. Primary femoral BMSCs isolated from C57BL/6 mice were used to evaluate the isopsoralen-mediated regulation of the expression of alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (RUNX2) during osteogenesis 2 weeks. We also examined the expression of peroxisome proliferator-activated receptor Î³ (PPARγ) and CCAAT/enhancer binding protein ß (C/EBPß) under adipogenic conditions for 1 and 2 weeks. In addition, ovariectomized (OVX) mice were used to examine the effects of isopsoralen on bone formation for 2 months. Finally, mammalian target of rapamycin complex 1 (mTORC1) signaling was examined under osteogenic and adipogenic conditions. We found that following treatment with isopsoralen, the expression levels of ALP, OCN and RUNX2 were upregulated, whereas those of PPARγ and C/EBPß were downregulated. mTORC1 signaling was also inhibited in vitro and in vivo. In the OVX mice that were intragastrically administered isopsoralen, bone parameters (trabecular thickness, bone volume/total volume and trabecular number) in the distal femoral metaphysis were significantly increased and the adipocyte number was decreased. On the whole, our findings demonstrate that isopsoralen promoted BMSC differentiation into osteoblasts and suppressed differentiation into adipocytes.


Assuntos
Adipogenia/efeitos dos fármacos , Adiposidade , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Furocumarinas/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Biomarcadores , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteocalcina/metabolismo , PPAR gama/metabolismo , Microtomografia por Raio-X
6.
Cell Tissue Res ; 367(2): 257-267, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27844205

RESUMO

Osteoporosis, which is a systemic skeletal disease characterized by low bone mineral density and microarchitectural deterioration of bone quality, is a global and increasing public health problem. Recent studies have suggested that Tenuigenin (TEN), a class of native compounds with numerous biological activities such as anti-resorptive properties, exerts protective effects against postmenopausal bone loss. The present study aims to investigate the osteogenic effects of TEN on bone mesenchymal stem cells (BMSCs) in vitro and in vivo. Alkaline phosphatase (ALP) activity/staining, Alizarin red staining and the expression of osteogenic markers, including runt-related transcription factor 2, osterix, osteocalcin, collagen Iα1, ß-catenin and glycogen synthase kinase-3ß were investigated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of TEN. An ovariectomized (OVX) mouse model was used to investigate the effect of TEN treatment for 3 months in vivo. We found that ALP activity, mineralized nodules and the expression of osteogenic markers were increased and WNT/ß-catenin signaling was enhanced in vitro and in vivo. Bone parameters, including trabecular thickness, trabecular number and bone mineral density were higher in the OVX+TEN group than in control OVX mice. Our results suggest the therapeutic potential of TEN for the treatment of patients with postmenopausal osteoporosis.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Reabsorção Óssea/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Medicamentos de Ervas Chinesas/química , Feminino , Fêmur/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Osteocalcina/genética , Osteocalcina/metabolismo , Ovariectomia , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
7.
Drug Des Devel Ther ; 9: 5169-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26392752

RESUMO

Osteoporosis is a systemic skeletal disease that is characterized by low bone density and microarchitectural deterioration of bone tissue. The increasing prevalence of osteoporosis has attracted much attention. In this study, MC3T3-E1 pre-osteoblasts were treated with the natural compound, baicalein (0.1 µmol/L, 1 µmol/L, 10 µmol/L), to stimulate differentiation over a 14-day period. In addition, a canonical ovariectomized (OVX) mouse model was used to investigate the effect of 3-month baicalein treatment (10 mg/kg per day) in preventing postmenopausal osteoporosis. In vitro, we found that baicalein induced activation of alkaline phosphatase, stimulated the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, and induced expression of osteoblast differentiation markers, ie, osteocalcin, osterix, collagen Iα1, and runt-related transcription factor 2 (RUNX2), in osteoblasts. In vivo, several bone parameters, including trabecular thickness, trabecular bone mineral density, and trabecular number, in the distal femoral metaphysis were significantly increased in OVX mice treated intragastrically with baicalein for 3 months compared with OVX mice that were not treated with baicalein. We also found that expression of osteocalcin and RUNX2 was decreased in primary ossified tissue from the OVX group, and baicalein increased the levels of osteocalcin and RUNX2 in OVX mice. These data suggest that baicalein can stimulate MC3T3-E1 cells to differentiate into osteoblasts via activation of the mTORC1 signaling pathway, which includes protein kinases and transcription factors such as P-4E/BP1 and P-S6K1.


Assuntos
Flavanonas/farmacologia , Complexos Multiproteicos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Relação Dose-Resposta a Droga , Feminino , Flavanonas/administração & dosagem , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoporose Pós-Menopausa/prevenção & controle , Ovariectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA