Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 26(1): 84, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610007

RESUMO

OBJECTIVE: We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets. METHODS: Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells. RESULTS: From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants. CONCLUSION: Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.


Assuntos
Nefrite Lúpica , Humanos , Nefrite Lúpica/genética , Transcriptoma , Macrófagos , Rim , Transdução de Sinais/genética
2.
Cell Signal ; 44: 33-42, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339084

RESUMO

Dishevelled-associated activator of morphogenesis 1 (Daam1) is a formin protein and participates in regulating cell migration of triple-negative breast cancer (TNBC) cells. The specific miRNA targeting Daam1 and mediating cell migration and invasion remains obscure. This experiment investigated the suppressive role of miR-613 in TNBC cells. The luciferase activity of Daam1 3'-untranslated region (3'-UTR) based reporters constructed in HEK-293T and MCF-7 cells suggested that Daam1 was the target gene of miR-613. Overexpressed miR-613 reduced the protein level of Daam1, weakened RhoA activity, and retarded the cell migration, cell invasion and colony formation of TNBC cells. Overexpression of Daam1 or RhoA rescued cell migration and invasion in miR-613-overexpressed TNBC cells, but failed to reverse colony formation. MiR-613 was significantly downregulated in breast cancer tissues compared with that in adjacent normal tissues. This downregulation in TNBC tissues and lymphnode metastatic breast cancer tissues was more obvious than that in non-TNBC tissues and non-metastatic cancer tissues, respectively. MiR-613 weakens the resistance of TNBC cells against paclitaxel rather than adriamycin, cyclophosphamide, docetaxel, and kaempferol. Taken together, miR-613 is involved in cell migration and invasion of TNBC cells via targeting Daam1/RhoA signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular , Ciclofosfamida/farmacologia , Docetaxel/farmacologia , Regulação para Baixo , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Quempferóis/farmacologia , Metástase Linfática , Células MCF-7 , Proteínas dos Microfilamentos , Invasividade Neoplásica , Paclitaxel/farmacologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas rho de Ligação ao GTP
3.
Onco Targets Ther ; 10: 4809-4819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29042792

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. MATERIALS AND METHODS: This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. RESULTS: A low dose of kaempferol (20 µmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. CONCLUSION: The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA