Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
BMC Med ; 21(1): 491, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082312

RESUMO

BACKGROUND: Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS: We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS: We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION: Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.


Assuntos
Esquizofrenia , Gêmeos Monozigóticos , Humanos , Teorema de Bayes , Alelos , Gêmeos Monozigóticos/genética , Células HEK293 , Metilação de DNA/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Epigênese Genética/genética
2.
J Mater Chem B ; 11(48): 11612-11619, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038224

RESUMO

The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.


Assuntos
Doxorrubicina , Neoplasias , Animais , Camundongos , Nanogéis/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Doxorrubicina/química , Glutationa/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis/química
3.
J Virol ; 97(4): e0181422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939341

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Assuntos
Autofagia , Imunidade Inata , Nucleoproteínas , Vírus da Febre do Vale do Rift , Imunidade Inata/imunologia , Vírus da Febre do Vale do Rift/imunologia , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo , Autofagia/imunologia , Replicação Viral , Linhagem Celular , Febre do Vale de Rift/imunologia , Humanos , Animais , Macrófagos/virologia
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122486, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801737

RESUMO

Selective labelling of the plasma membrane (PM) by fluorescence imaging techniques enables an intuitive analysis of cell status together with dynamic changes, and therefore is of great value. We herein disclose a novel carbazole-based probe, CPPPy, that shows aggregation-induced emission (AIE) property and is observed to selectively accumulate at the PM of living cells. Benefiting from its good biocompatibility and PM-targeted specificity, CPPPy can light up the PM of cells by high-resolution imaging even at a low concentration of 200 nM. Simultaneously, CPPPy is capable of generating both singlet oxygen and free radical-dominated species upon visible light irradiation, which further induces irreversible growth inhibition and necrocytosis of tumor cells. This study thus provides new insight into the construction of multifunctional fluorescence probes with PM-specific bioimaging and photodynamic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Luz , Membrana Celular , Imagem Óptica , Oxigênio Singlete , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico
5.
Front Oncol ; 12: 931140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465354

RESUMO

Background: Recently, an in vivo study demonstrated that circulating tumor cell-associated white blood cell (CTC-WBC) cluster possess much greater potential than single CTCs. We aim to explore the correlation between the CTC-WBC cluster and the clinicopathological characteristics of hepatocellular carcinoma (HCC) patients to seek novel biomarkers for HCC metastasis and recurrence. Methods: We retrospectively analyzed 136 HCC patients from October 2014 to March 2020 who received CTC tests using the CanPatrol CTC enrichment technique. The correlation between the clinical features and total CTCs, EMT-CTCs, and CTC-WBC cluster were analyzed by a chi-square test. The ROC curves were simulated for evaluating the diagnostic performance of CTC parameters in HCC metastasis. Patients were followed up from February 2015 to November 2021, and the relapse-free survival (RFS) was analyzed using the Kaplan-Meier curve. Results: A total of 93.4% (127/136) and 31.6% (43/136) of HCC patients had detectable CTCs and CTC-WBC clusters. Baseline CTC-WBC cluster was closely correlated with microvascular invasion, portal vein tumor thrombus, and extrahepatic metastasis in pre-treatment HCC patients (P <0.05). The simulated ROC curves presented an AUC of 0.821 for the CTC-WBC cluster (sensitivity of 90.0% and specificity of 93.7%) in discriminating metastasis from non-metastatic HCC, which was higher than that for total CTCs (0.718) and EMT-CTCs (0.716). Further follow-up analysis showed that compared to the CTC-WBC cluster negative group (<1/5 ml), patients in the CTC-WBC cluster positive group (≥1/5 ml) presented an increased relapse ratio (60.0% versus 17.9%) and shorter RFS (22.9 versus 53.8 months). Dynamic analysis of CTCs parameters showed that total CTC level, EMT-CTCs proportion, and CTC-WBC cluster were decreased after microwave ablation treatment, while CTC-WBC cluster increased on average 10 months in advance of imaging (MRI) diagnosed recurrence. Conclusion: The CTC-WBC cluster is a promising biomarker for the metastasis diagnosis and prognosis of HCC metastasis. Dynamic monitoring of the CTC-WBC cluster is an effective method for early detection and intervention of HCC recurrence and metastasis.

6.
Reprod Biol ; 22(3): 100667, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717759

RESUMO

Recent evidence indicates that circular RNAs (circRNAs) play crucial regulatory roles in the pathogenesis and development of endometriosis. Circ_0004712 was found to be differentially expressed in endometriosis. However, the detailed function and mechanism of circ_0004712 in endometriosis are still unclear. Quantitative real-time polymerase chain reaction and Western blot were used for the detection of circ_0004712, miR-488-3p and ROCK1 (Rho Associated Coiled-Coil Containing Protein Kinase 1) levels. In vitro experiments in endometrial endothelial cells were performed by cell counting kit-8, EdU, transwell, wound healing assays, and flow cytometry, respectively. The molecular mechanism of circ_0004712 function was investigated using bioinformatics target predication, dual-luciferase reporter, and RNA immunoprecipitation (RIP) assays. The expression of circ_0004712 was higher in endometriotic endometrial tissues and epithelial cells. Knockdown of circ_0004712 suppressed cell proliferation, migration, invasion, EMT process and induced apoptosis in ectopic endometrial epithelial cells in vitro. Mechanistically, circ_0004712 acted as a ceRNA to sponge miR-488-3p, thus elevating the expression of ROCK1, which was confirmed to be a target of miR-488-3p. Rescue experiments suggested that miR-488-3p inhibition reversed the inhibitory effects of circ_0004712 silencing on cell growth and metastasis. Moreover, miR-488-3p restoration restrained the proliferation and metastasis in ectopic endometrial epithelial cells, which were attenuated by ROCK1 overexpression. Circ_0004712 knockdown suppressed the proliferation and metastasis of ectopic endometrial epithelial cells via miR-488-3p/ROCK1 axis in vitro, suggesting a new insight into the pathogenesis of endometriosis.


Assuntos
Endometriose , MicroRNAs , Movimento Celular , Proliferação de Células , Células Endoteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases Associadas a rho
7.
Haematologica ; 107(11): 2589-2600, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546300

RESUMO

Patients with newly diagnosed acute promyelocytic leukemia (APL) are often obese or overweight, accompanied by metabolic disorders, such as dyslipidemia. However, the link between dyslipidemia and leukemia is obscure. Here, we conducted a retrospective study containing 1,412 cases (319 newly diagnosed APL patients, 393 newly diagnosed non-APL acute myeloid leukemia patients, and 700 non-tumor controls) and found that APL patients had higher triglyceride levels than non- APL and control groups. Using clinical data, we revealed that hypertriglyceridemia served as a risk factor for early death in APL patients, and there was a positive correlation between triglyceride levels and leukocyte counts. RNA sequencing analysis of APL patients having high or normal triglyceride levels highlighted the contribution of peroxisome proliferatoractivated receptor-α (PPARα), a crucial regulator of cell metabolism and a transcription factor involved in cancer development. The genome-wide chromatin occupancy of PPARα revealed that PPARα co-existed with PML/RARα within the super-enhancer regions to promote cell proliferation. PPARα knockdown affected the expression of target genes responsible for APL proliferation, including FLT3, and functionally inhibited the proliferation of APL cells. Moreover, in vivo results in mice having high fat diet-induced high triglyceride levels supported the connection between high triglyceride levels and the leukemic burden, as well as the involvement of PPARα-mediated-FLT3 activation in the proliferation of APL cells. Our findings shed light on the association between APL proliferation and high triglyceride levels and provide a genetic link to PPARα-mediated hyperlipidemia in APL.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Leucemia Promielocítica Aguda , Camundongos , Animais , Leucemia Promielocítica Aguda/patologia , PPAR alfa , Tretinoína/farmacologia , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Triglicerídeos
8.
Front Oncol ; 12: 778511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494043

RESUMO

Background: Clinical characteristics including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) are important biomarkers in the treatment of breast cancer, but how genomic mutations affect their status is rarely studied. This study aimed at finding genomic mutations associated with these clinical characteristics. Methods: There were 160 patients with breast cancer enrolled in this study. Samples from those patients were used for next-generation sequencing, targeting a panel of 624 pan-cancer genes. Short nucleotide mutations, copy number variations, and gene fusions were identified for each sample. Fisher's exact test compared each pair of genes. A similarity score was constructed with the resulting P-values. Genes were clustered with the similarity scores. The identified gene clusters were compared to the status of clinical characteristics including ER, PR, HER2, and a family history of cancer (FH) in terms of the mutations in patients. Results: Gene-by-gene analysis found that CCND1 mutations were positively correlated with ER status while ERBB2 and CDK12 mutations were positively correlated with HER2 status. Mutation-based clustering identified four gene clusters. Gene cluster 1 (ADGRA2, ZNF703, FGFR1, KAT6A, and POLB) was significantly associated with PR status; gene cluster 2 (COL1A1, AXIN2, ZNF217, GNAS, and BRIP1) and gene cluster 3 (FGF3, FGF4, FGF19, and CCND1) were significantly associated with ER status; gene cluster 2 was also negatively associated with a family history of cancer; and gene cluster 4 was significantly negatively associated with age. Patients were classified into four corresponding groups. Patient groups 1, 2, 3, and 4 had 24.1%, 36.5%, 38.7%, and 41.3% of patients with an FDA-recognized biomarker predictive of response to an FDA-approved drug, respectively. Conclusion: This study identified genomic mutations positively associated with ER and PR status. These findings not only revealed candidate genes in ER and PR status maintenance but also provided potential treatment targets for patients with endocrine therapy resistance.

9.
Schizophrenia (Heidelb) ; 8(1): 11, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232977

RESUMO

Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia. Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together, our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic implications for schizophrenia.

10.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208940

RESUMO

A group of peptide metabolites (1-4), designated as mintaimycins, were isolated from Micromonospora sp. C-3509. The planar structures of mintaimycins were determined by combination of mass spectrometry, 1D and 2D NMR spectroscopy, and the stereochemistry of mintaimycins were partially resolved by Marfey's or Mosher's method. Mintaimycins featured a central ß-methylphenylalanine or phenylalanine linked at its amino group with 5-methyl-2-hexenoic acid, and at its carboxyl group with 5-hydroxy-norleucine or leucine that combined a derivative of hexanoic acid or 4-methylpentanoic acid. Mintaimycin A1 (1), the principal component, was found to exhibit the biological activity of inducing pre-adipocyte differentiation of 3T3-L1 fibroblast cells at 10.0 µmol/L.


Assuntos
Micromonospora , Peptídeos , Espectrometria de Massas , Micromonospora/química , Micromonospora/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo
11.
Plant Cell Rep ; 41(4): 1087-1101, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150305

RESUMO

KEY MESSAGE: Glycinebetaine alleviates chilling stress by protecting photosystems I and II in BADH-transgenic and GB-treated tomato plants, which can be an effective strategy for improving crop chilling tolerance. Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world, but is highly susceptible to chilling stress and does not naturally accumulate glycinebetaine (GB), one of the most effective stress protectants. The protective mechanisms of GB on photosystem I (PSI) and photosystem II (PSII) against chilling stress, however, remain poorly understood. Here, we address this problem through exogenous GB application and generation of transgenic tomatoes (Moneymaker) with a gene encoding betaine aldehyde dehydrogenase (BADH), which is the key enzyme in the synthesis of GB, from spinach. Our results demonstrated that GB can protect chloroplast ultramicrostructure, alleviate PSII photoinhibition and maintain PSII stability under chilling stress. More importantly, GB increased the electron transfer between QA and QB and the redox potential of QB and maintained a high rate of cyclic electron flow around PSI, contributing to reduced production of reactive oxygen species, thereby mitigating PSI photodamage under chilling stress. Our results highlight the novel roles of GB in enhancing chilling tolerance via the protection of PSI and PSII in BADH transgenic and GB-treated tomato plants under chilling stress. Thus, introducing GB-biosynthetic pathway into tomato and exogenous GB application are effective strategies for improving chilling tolerance.


Assuntos
Solanum lycopersicum , Betaína/metabolismo , Betaína/farmacologia , Betaína-Aldeído Desidrogenase/genética , Elétrons , Solanum lycopersicum/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120895, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065518

RESUMO

Lipid droplets (LDs) have been regarded as potential marker for study the pathologic processes and diagnosis of valvular heart disease. While conventional imaging strategy fail to precisely locate LDs in pathological tissues. Herein, a LDs specific probe ECPID with special feature of single-excitation but dual-emission in oil (520 nm) and water (628 nm) was prepared for LDs imaging. ECPID exhibited good biocompatibility, great performance in intracellular and tissular LDs imaging, which would help to reveal the pathologic process of human fibrocalcific aortic valvular leaflet. Our work offers a novel approach for accurate imaging LDs in situ and paves a way to study the pathologic processes of valvular disease.


Assuntos
Gotículas Lipídicas , Água , Diagnóstico por Imagem , Corantes Fluorescentes , Humanos
13.
Plant J ; 109(4): 891-908, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807496

RESUMO

Neolamarckia cadamba (Roxb.), a close relative of Coffea canephora and Ophiorrhiza pumila, is an important traditional medicine in Southeast Asia. Three major glycosidic monoterpenoid indole alkaloids (MIAs), cadambine and its derivatives 3ß-isodihydrocadambine and 3ß-dihydrocadambine, accumulate in the bark and leaves, and exhibit antimalarial, antiproliferative, antioxidant, anticancer and anti-inflammatory activities. Here, we report a chromosome-scale N. cadamba genome, with 744.5 Mb assembled into 22 pseudochromosomes with contig N50 and scaffold N50 of 824.14 Kb and 29.20 Mb, respectively. Comparative genomic analysis of N. cadamba with Co. canephora revealed that N. cadamba underwent a relatively recent whole-genome duplication (WGD) event after diverging from Co. canephora, which contributed to the evolution of the MIA biosynthetic pathway. We determined the key intermediates of the cadambine biosynthetic pathway and further showed that NcSTR1 catalyzed the synthesis of strictosidine in N. cadamba. A new component, epoxystrictosidine (C27H34N2O10, m/z 547.2285), was identified in the cadambine biosynthetic pathway. Combining genome-wide association study (GWAS), population analysis, multi-omics analysis and metabolic gene cluster prediction, this study will shed light on the evolution of MIA biosynthetic pathway genes. This N. cadamba reference sequence will accelerate the understanding of the evolutionary history of specific metabolic pathways and facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Alcaloides Indólicos/metabolismo , Rubiaceae/genética , Antioxidantes , Vias Biossintéticas/genética , Estudo de Associação Genômica Ampla , Extratos Vegetais , Folhas de Planta/metabolismo , Rubiaceae/crescimento & desenvolvimento , Alcaloides de Triptamina e Secologanina , Alcaloides de Vinca
14.
Front Immunol ; 12: 750969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858407

RESUMO

The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1ß, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteases 3C de Coronavírus/imunologia , Citocinas/biossíntese , NF-kappa B/metabolismo , SARS-CoV-2/imunologia , Sumoilação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Imunidade Inata/imunologia , Interleucina-1beta/biossíntese , Interleucina-2/biossíntese , Interleucina-6/biossíntese , Transdução de Sinais/fisiologia , Sumoilação/efeitos dos fármacos , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese , Células Vero
15.
J Mater Chem B ; 9(46): 9553-9560, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761794

RESUMO

Photodynamic therapy (PDT) is a potential strategy for many superficial, esophageal, intestinal, and bronchial cancer treatments, but its therapeutic effect is limited by a lack of specificity and the hypoxic tumor environment. It is necessary to develop novel photosensitizers (Ps) with organelles targeting and the ability to generate cytotoxic species under light irradiation without the presence of oxygen. Herein, we designed and synthesized a biocompatible fluorescent Ps CPNBD for lipid droplets (LDs) fluorescence (FL) image-guided PDT. CPNBD showed FL quenching in water but FL was significantly turned on by oil with a remarkable FL enhancement compared to that in aqueous solution. Due to its strong lipophilicity (Clog P of 7.96), CPNBD could specifically stain the LDs of human clear cell renal cell carcinoma (ccRCC) tumor cells and tissues with good photostability. Meanwhile, CPNBD could efficiently generate cytotoxic reactive oxygen species under low-power white-light irradiation, which could efficiently damage DNA via a PDT process with great tumor suppression ability in vitro and in vivo. Thus, this work provides a novel strategy for designing LD-targeting Ps with efficient image-guided PDT under the tumor hypoxic environment.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Fotoquimioterapia , Humanos , Carcinoma de Células Renais , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Oxigênio , Fotoquimioterapia/métodos
16.
Signal Transduct Target Ther ; 6(1): 346, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561414

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) responses to viral infection are a form of antibody regulated immune responses mediated through the Fc fragment. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered ADCC responses contributes to COVID-19 disease development is currently not well understood. To understand the potential correlation between ADCC responses and COVID-19 disease development, we analyzed the ADCC activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease. ADCC was elicited by 10 days post-infection, peaked by 11-20 days, and remained detectable until 400 days post-infection. In general, patients with severe disease had higher ADCC activities. Notably, patients who had severe disease and recovered had higher ADCC activities than patients who had severe disease and deceased. Importantly, ADCC activities were mediated by a diversity of epitopes in SARS-COV-2-infected mice and induced to comparable levels against SARS-CoV-2 variants of concern (VOCs) (B.1.1.7, B.1.351, and P.1) as that against the D614G mutant in human patients and vaccinated mice. Our study indicates anti-SARS-CoV-2 ADCC as a major trait of COVID-19 patients with various conditions, which can be applied to estimate the extra-neutralization level against COVID-19, especially lethal COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
17.
Front Immunol ; 12: 707468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408750

RESUMO

Ovarian cancer is a leading cause of death among gynecological malignancies, and novel therapies are urgently needed. Here we report preliminary findings on the potential safety and efficacy of 6B11-OCIK, an adoptive cell therapy of autologous T cells induced by the humanized anti-idiotypic antibody 6B11 minibody plus dendritic cells and cytokines, against platinum-resistant recurrent or refractory ovarian cancer in three patients. We found that 6B11-OCIK treatment was safe and well tolerated after five cycles of intravenous infusion with an initial dose of 1-2×109 cells and a dose-climbing strategy. Hemoglobin, platelets, white cell count, creatinine or liver enzyme values, coagulation function, kidney and heart function were not significantly affected over the duration of therapy. Two of the three enrolled patients showed potentially drug-related grade 1 and 2 weakness, and no other adverse events were observed. Of the three enrolled patients, one had stable disease and two showed disease progression. The patient with favorable clinical efficacy had better immune response as measured by 6B11-OCIK proliferation capacity, activation ability of CD3+CD8+ tumor-specific cytotoxic T lymphocytes and CD3+CD56+ cytokine-induced killer cells, and tumor cell killing efficiency. Changes in circulating tumor cells after treatment were consistent with serum level CA125 in the patient with stable disease (both decreased), while differences were observed in the two patients with disease progression (increased CA125 in both and decreased CTC in the patient with better immune response), suggesting that variation of circulating tumor cells was more consistent with immune response and reflected efficacy directly. This preliminary study suggested that autologous 6B11-OCIK treatment was safe and had potential clinical efficacy against ovarian cancer. Patients with better immune response had more favorable efficacy. In addition to imaging, CA125 and immunophenotypes, CTC monitoring may represent a potential indicator of immunotherapy response.


Assuntos
Carcinoma Epitelial do Ovário/terapia , Imunoterapia Adotiva/métodos , Neoplasias Ovarianas/terapia , Linfócitos T/transplante , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/terapia , Linfócitos T/imunologia
18.
NPJ Schizophr ; 7(1): 27, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021155

RESUMO

Genome-wide association studies (GWAS) have accelerated the discovery of numerous genetic variants associated with schizophrenia. However, most risk variants show a small effect size (odds ratio (OR) <1.2), suggesting that more functional risk variants remain to be identified. Here, we employed region-based multi-marker analysis of genomic annotation (MAGMA) to identify additional risk loci containing variants with large OR value from Psychiatry Genomics Consortium (PGC2) schizophrenia GWAS data and then employed summary-data-based mendelian randomization (SMR) to prioritize schizophrenia susceptibility genes. The top-ranked susceptibility gene ATP5MD, encoding an ATP synthase membrane subunit, is observed to be downregulated in schizophrenia by the risk allele of CNNM2-rs1926032 in the schizophrenia-associated 10q24.32 locus. The Atp5md knockout (KO) in mice was associated with abnormal startle reflex and gait, and ATP5MD knockdown (KD) in human induced pluripotent stem cell-derived neurons disrupted the neural development and mitochondrial respiration and ATP production. Moreover, CNNM2-rs1926032 KO could induce downregulation of ATP5MD expression and disruptions of mitochondrial respiration and ATP production. This study constitutes an important mechanistic component that links schizophrenia-associated CNNM2 regions to disruption in energy adenosine system modulation and neuronal function by long-distance chromatin domain downregulation of ATP5MD. This pathogenic mechanism provides therapeutic implications for schizophrenia.

19.
Chem Commun (Camb) ; 57(8): 1054, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33480943

RESUMO

Correction for 'A lipid droplet targeted fluorescent probe for high-efficiency image-guided photodynamic therapy of renal cell carcinoma' by Ping Tan et al., Chem. Commun., 2021, DOI: 10.1039/d0cc07336a.

20.
Chem Commun (Camb) ; 57(8): 1046-1049, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33409527

RESUMO

A one-step synthesized LD specific fluorescent probe TTIE with high specificity, good photostability and great capacity in generating cytotoxic reactive oxygen species (ROS) under low powered white light irradiation is designed and synthesized for LD specific image-guided photodynamic therapy (PDT) in human clear cell renal cell carcinoma (ccRCC) primary cells and tissues.


Assuntos
Carcinoma de Células Renais/terapia , Corantes Fluorescentes , Neoplasias Renais/terapia , Gotículas Lipídicas/química , Fotoquimioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA