Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
BMC Urol ; 24(1): 144, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997703

RESUMO

BACKGROUND: Prostate cancer, characterized by its insidious onset and short overall survival, and has seen a rise in incidence over recent decades. This study aims to investigate the expression and molecular mechanism of lncRNA PTCSC3 (PTCSC3) in prostate cancer in order to develop new prognostic and therapeutic biomarkers. METHODS: The level of PTCSC3 in serum and cell samples of prostate cancer was quantitatively measured using RT-qPCR assays. The correlation between the variation in PTCSC3 levels and clinical indicators of patients was evaluated. The survival status of the prostate cancer patients included in the study was evaluated using Kaplan-Meier curve and multivariable Cox analysis. The impact of PTCSC3 overexpression on cell growth and activity was revealed by CCK-8 and Transwell assays. The targeting relationship between PTCSC3 and miR-182-5p was determined by bioinformatics prediction and luciferase activity. RESULTS: PTCSC3 was found to be downregulated in prostate cancer, and its low levels were associated with short overall survival in patients. It influenced the progression of prostate cancer by targeting miR-182-5p. Increasing PTCSC3 levels suppressed the proliferation, migration and invasion levels of cells, and miR-182-5p mimic counteracted PTCSC3's effects on cells. CONCLUSIONS: As a potential prognostic biological factor for prostate cancer, PTCSC3 may regulate the progression of prostate cancer by sponging miR-182-5p and affect the prognosis of patients.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , MicroRNAs/genética , MicroRNAs/sangue , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , Pessoa de Meia-Idade , Idoso , Taxa de Sobrevida , Regulação para Baixo
2.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719209

RESUMO

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Macrófagos , Espécies Reativas de Oxigênio , Staphylococcus aureus , Animais , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia
3.
Discov Oncol ; 15(1): 113, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605206

RESUMO

PURPOSE: The purpose of this study was to investigate the role of lncRNA DSCAM-AS1 in prostate cancer to find new therapeutic targets and promote the research progress of prostate cancer. METHODS: RT-qPCR was used to detect DSCAM-AS1 expression in prostate cancer tissues, normal tissues, human normal prostate epithelial cells (RWPE), and four prostate cancer cell lines. The clinical and prognostic role of DSCAM-AS1 was evaluated by the Kaplan-Meier curve and chi-square test. Secondly, a dual luciferase reporter gene assay was used to study the regulatory mechanism between miR-338-3p and DSCAM-AS1. Finally, the roles of DSCAM-AS1 and miR-338-3p in prostate cancer cell proliferation and metastasis were explored by CCK-8 and Transwell assays. RESULTS: It was found that DSCAM-AS1 upregulation could serve as a warning of deterioration and poor prognosis in prostate cancer patients, and that knockdown of DSCAM-AS1 expression inhibited the progression of prostate cancer cells. In addition, miR-338-3p, a target of DSCAM-AS1, was found to be down-regulated in prostate cancer cells and miR-338-3p knockdown could reverse the inhibitory effect of DSCAM-AS1 silencing on prostate cancer. CONCLUSION: DSCAM-AS1 is up-regulated in prostate cancer and regulates the progression of prostate cancer cells by targeting miR-338-3p.

4.
Inflammation ; 47(2): 789-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446361

RESUMO

Altered cardiac innate immunity is highly associated with the progression of cardiac disease states and heart failure. S100A8/A9 is an important component of damage-associated molecular patterns (DAMPs) that is critically involved in the pathogenesis of heart failure, thus considered a promising target for pharmacological intervention. In the current study, initially, we validated the role of S100A8/A9 in contributing to cardiac injury and heart failure via the overactivation of the ß-adrenergic pathway and tested the potential use of paquinimod as a pharmacological intervention of S100A8/A9 activation in preventing cardiac dysfunction, collagen deposition, inflammation, and immune cell infiltration in ß-adrenergic overactivation-mediated heart failure. This finding was further confirmed by the cardiomyocyte-specific silencing of S100A9 via the use of the adeno-associated virus (AAV) 9-mediated short hairpin RNA (shRNA) gene silencing system. Most importantly, in the assessment of the underlying cellular mechanism by which activated S100A8/A9 cause aggravated progression of cardiac fibrosis and heart failure, we discovered that the activated S100A8/A9 can promote fibroblast-macrophage interaction, independent of inflammation, which is likely a key mechanism leading to the enhanced collagen production. Our results revealed that targeting S100A9 provides dual beneficial effects, which is not only a strategy to counteract cardiac inflammation but also preclude cardiac fibroblast-macrophage interactions. The findings of this study also indicate that targeting S100A9 could be a promising strategy for addressing cardiac fibrosis, potentially leading to future drug development.


Assuntos
Calgranulina B , Miócitos Cardíacos , Animais , Camundongos , Agonistas Adrenérgicos beta/farmacologia , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Calgranulina B/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
5.
Autophagy ; 20(7): 1651-1672, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433354

RESUMO

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.


Assuntos
Anoikis , Autofagia , Cisteína Endopeptidases , Lopinavir , RNA Circular , Anoikis/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , RNA Circular/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Lopinavir/farmacologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Camundongos , Ubiquitinação/efeitos dos fármacos
6.
Cancer Lett ; 584: 216598, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224863

RESUMO

N6-methyladenosine (m6A), a dynamically reversible modification in eukaryotic RNAs, modulates gene expression and pathological processes in various tumors. KIAA1429, the largest component of the m6A methyltransferase complex, plays an important role in m6A modification. However, the underlying mechanism of KIAA1429 in hepatocellular carcinoma (HCC) remains largely unknown. Immunohistochemical assay was performed to examine the expression of KIAA1429 in HCC tissues. Transwell, wound healing and animal experiments were used to investigate the influence of KIAA1429 on cell migration and invasion. The mRNA high-throughput sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed to screen the downstream target of KIAA1429. RNA stability assays, RNA immunoprecipitation assay (RIP), MeRIP-qPCR and luciferase assay were used to evaluate the relationship between KIAA1429 and the m6A-modified genes. Results showed that the expression level of KIAA1429 was significantly higher in HCC tissues than in adjacent tissues, and the upregulation of KIAA1429 could promote HCC metastasis in vitro and in vivo. Mechanistically, we confirmed that KIAA1429 negatively regulated the tumor suppressor, Rho family GTPase 3 (RND3), by decreasing its mRNA stability in coordination with the m6A reader YTHDC1. Moreover, we demonstrated that KIAA1429 could regulate the m6A modification of RND3 mRNA via its RNA binding domain. Our data indicated that KIAA1429 exerted its oncogenic role by inhibiting RND3 expression in an m6A-dependent manner, suggesting that KIAA1429 might be a potential prognostic biomarker and therapeutic target in HCC.


Assuntos
Adenina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Adenina/análogos & derivados , Carcinoma Hepatocelular/genética , Regulação para Baixo , Neoplasias Hepáticas/genética , RNA , RNA Mensageiro , Humanos
7.
Mar Environ Res ; 193: 106282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042633

RESUMO

Despite being widely distributed in Asia, Carcinoscorpius rotundicauda is often overlooked and, its population status remains unclear. Moreover, it is threatened by illegal harvesting and degradation of mangrove ecosystems. Protecting its habitat is essential for population and biodiversity conservation, as mangroves provide nursery grounds and food supply for C. rotundicauda. This review discusses the biological characteristics of C. rotundicauda, including ecology, nutrition, life history, toxicology, and immunology. It also presents information about its distribution and population status. The review emphasizes the challenges faced by C. rotundicauda and proposes a conservation framework that involves the participation of local residents to facilitate conservation efforts. Collaboration between local residents and communities is proposed to protect and monitor the mangrove ecosystem. Additionally, this framework can support field research, protect C. rotundicauda juveniles and other species, and ensure the livelihood of local residents through participation in carbon trading markets and eco-industries such as eco-farming and eco-tourism.


Assuntos
Ecossistema , Caranguejos Ferradura , Animais , Biodiversidade , Ecologia
8.
Genomics ; 116(1): 110764, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113974

RESUMO

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , MicroRNAs/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Família 2 do Citocromo P450/genética
9.
Oncol Lett ; 27(1): 33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108078

RESUMO

Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway and has been demonstrated to be involved in the pathogenesis of a number of tumors. However, the role of CMA in colorectal cancer cell proliferation, metastasis and cell survival during oxidative stress and oxaliplatin resistance remains to be elucidated. In the present study, elevated expression of LAMP2A was observed in colon cancer tissues. Then, CMA activity was increased in SW480 and HT29 colorectal cancer cells with a LAMP2A overexpression vector and CMA activity was decreased using a LAMP2A short interfering RNA vector. MTT and colony formation assays showed that the colorectal cancer cell proliferation ability and cell viability following treatment with H2O2 or oxaliplatin were decreased significantly after LAMP2A knockdown and increased significantly after LAMP2A overexpression. Wound healing assays and Transwell invasion assays demonstrated that downregulation of LAMP2A expression inhibited the cell migration and invasion abilities of colorectal cancer and that upregulation of LAMP2A expression promoted cell migration and invasion. Extracellular acidification rate (ECAR) assay and lactate determination assay showed that glycolysis in colorectal cancer cells was significantly downregulated after LAMP2A knockdown and significantly upregulated after LAMP2A overexpression. Inhibition of glycolysis by 2-DG markedly attenuated LAMP2A-induced chemoresistance in colorectal cancer cells. Collectively, these data indicated that CMA can promote colorectal cancer cell proliferation, metastasis and cell survival during oxidative stress and oxaliplatin resistance and that the mechanism is related to the glycolytic pathway, which may provide a new therapeutic target for colorectal cancer patients.

10.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067576

RESUMO

Two new dipyrroloquinones, namely talaroterreusinones A (1) and B (2), together with four known secondary metabolites, terreusinone A (3), penicillixanthone A (4), isorhodoptilometrin (5), and chrysomutanin (6), were isolated from the solid culture of the endophytic fungus Talaromyces sp. by integrating mass spectrometry-based metabolic profiling and a bioassay-guided method. Their planar structures and stereochemistry were elucidated by comprehensive spectroscopic analysis including NMR and MS. The absolute configuration at C-1″ of terreusinone A (1) was established by applying the modified Mosher's method. Compounds 1-6 were evaluated for anti-inflammatory activity and cytotoxicity. As a result, 1-3 inhibited the LPS-stimulated NO production in macrophage RAW264.7 cells, with IC50 values of 20.3, 30.7, and 20.6 µM, respectively. Penicillixanthone A (4) exhibited potent cytotoxic activity against Hep G2 and A549 cell lines, with IC50 values of 117 nM and 212 nM, respectively, and displayed significant antitumour effects in A549 cells by inhibiting the PI3K-Akt-mTOR signalling pathway.


Assuntos
Policetídeos , Talaromyces , Estrutura Molecular , Talaromyces/química , Fosfatidilinositol 3-Quinases
11.
Int J Gen Med ; 16: 4485-4498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814643

RESUMO

Objective: To investigate the clinical efficacy and safety of anlotinib combined with anti-PD-1 inhibitors in the 2nd or later-line treatment of advanced solid tumors. Patients and Methods: A total of 63 patients with advanced solid tumors who had failed or could not endure the adverse reactions after receiving first-line or more systematic treatment in the Second Affiliated Hospital of Harbin Medical University from March 2019 to April 2023 were treated with anlotinib Hydrochloride capsule combined with anti-PD-1 inhibitors. The efficacy and adverse reactions were evaluated according to RECIST1.1 and NCICTC4.0 standards. Results: The percentage of overall response rate of 63 patients during the combination administration indicated that complete response was 1.6% (n=1), partial response was 23.8% (n=15), stable disease was 39.7% (n=25) and progressive disease was 34.9% (n=22), yielding objective response rate (ORR) of 25.4% and disease control rate (DCR) of 65.1%. Furthermore, the median PFS of 63 patients with advanced solid tumors was 7 months and the median OS was not reached, and the median follow-up time is 4.5 months. In subgroup analysis, there was no significant difference in PFS between first-line, second-line, third-line and above (p=0.631); there was no significant difference in PFS between PD-1 positive patients and PD-1 negative patients (p=0.094); there was no significant difference in PFS between patients who had previously used anti-PD-1 inhibitors and patients who had not used before (p=0.204). The most common adverse reactions were hypertension, hand-foot syndrome, and fatigue, with an incidence of 28.4% (18/63), 25.6% (14/63), and 25.6% (14/63), respectively. Most of the adverse reactions were grade 1-2, and there were no grade 4 adverse reactions. Conclusion: Anlotinib combined with anti-PD-1 inhibitors demonstrated promising efficacy and tolerable safety for patients with advanced solid tumors in the 2nd or later-line treatment.

12.
J Biol Chem ; 299(10): 105215, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660919

RESUMO

Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is important for the expression of genes associated with oxidative stress. The levels of NRF2 are controlled by Kelch-like ECH-associated protein 1 (KEAP1)-dependent degradation. Although oxidative stress is known to suppress KEAP1 activity to stabilize the levels of NRF2, the mechanism for this control is unclear. Here, we identify that KEAP1 is modified by SUMO1 at the lysine residue position 39 (K39). Arginine replacement of this lysine (K39R) in KEAP1 did not affect its stability, subcellular localization, or dimerization but promoted the formation of the Cullin 3 ubiquitin ligase and increased NRF2 ubiquitination. This was accompanied by decreased NRF2 expression. Gene reporter assays showed that the transcription of antioxidant response elements was heightened in KEAP1-WT cells compared to cells expressing the KEAP1-K39R SUMO1 substrate mutant. Consistent with this, chromatin immunoprecipitation assays revealed higher NRF2 binding to the promoter regions of antioxidant genes in cells expressing the KEAP1-WT compared to the KEAP1-K39R mutant protein in H1299 lung cancer cell. The significance of this suppression of KEAP1 activity by its SUMOylation was tested in a subcutaneous tumor model of H1299 lung cancer cell lines that differentially expressed the WT and K39R KEAP1 constructs. This model showed that mutating the SUMOylation site on KEAP1 altered the production of reactive oxygen species and suppressed tumor growth. Taken together, our study recognizes that NRF2-dependent redox control is regulated by the SUMOylation of KEAP1. These findings identify a potential new therapeutic option to counteract oxidative stress.

13.
Heliyon ; 9(8): e18498, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533997

RESUMO

Purpose: Endocrine resistance hormone receptor-positive (HR+) advanced breast cancer (ABC) is generally insensitive to immunecheckpoint inhibitors (ICIs). This study sought to determine whether PI3Kδ inhibitor could enhance the sensitivity of endocrine resistance HR + advanced BC to ICIs by reducing immune evasion. Methods: Patient-derived HR + ABC xenografts were implanted into immune-humanized NSG mice and subsequently treated with YY20394 (PI3Kδ inhibitor) and camrelizumab. The mice were monitored for tumor progression, biochemical blood indicators, and peripheral blood T-cell subsets. The xenografted tumors were collected at the end of the treatment cycle and subjected to HE staining, immunohistochemistry and protein phosphorylation analysis. Besides, the xenografted tumors were also used to isolate primary breast cancer cells (BCCs) and regulatory T-cells (Tregs), which were subsequently used to evaluate drug sensitivity in vitro. Results: The humanized PDX model showed a favorable initial treatment response to camrelizumab combined with YY20394 and manageable toxicity. YY20394 plus camrelizumab showed a strong inhibitory effect on HR + BC in vivo mediated by suppression of Treg activity and an increased proportion of CD8+ T cells. Mice bearing tumors treated with YY20394 and camrelizumab had less invasion, mitotic figures, and ki67 expression, while having higher IL-12 expression compared with other groups. Mechanistically, YY20394 only effectively inhibited the PI3K pathway and proliferation activity in Tregs but not in BCCs. Conclusion: Our study suggests PI3Kδ inhibitor could the enhance the efficacy of ICIs in HR + BC PDX models by combating immune suppression and provides a feasible approach that may overcome the resistance of ICIs in HR + BC patients.

14.
J Cancer Res Clin Oncol ; 149(13): 12513-12534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382675

RESUMO

Although significant advances have been made in the diagnosis and treatment of breast cancer (BC) in recent years, BC remains the most common cancer in women and one of the main causes of death among women worldwide. Currently, more than half of BC patients have no known risk factors, emphasizing the significance of identifying more tumor-related factors. Therefore, we urgently need to find new therapeutic strategies to improve prognosis. Increasing evidence demonstrates that the microbiota is present in a wider range of cancers beyond colorectal cancer. BC and breast tissues also have different types of microbiotas that play a key role in carcinogenesis and in modulating the efficacy of anticancer treatment, for instance, chemotherapy, radiotherapy, and immunotherapy. In recent years, studies have confirmed that the microbiota can be an important factor directly and/or indirectly affecting the occurrence, metastasis and treatment of BC by regulating different biological processes, such as estrogen metabolism, DNA damage, and bacterial metabolite production. Here, we review the different microbiota-focused studies associated with BC and explore the mechanisms of action of the microbiota in BC initiation and metastasis and its application in various therapeutic strategies. We found that the microbiota has vital clinical value in the diagnosis and treatment of BC and could be used as a biomarker for prognosis prediction. Therefore, modulation of the gut microbiota and its metabolites might be a potential target for prevention or therapy in BC.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Prognóstico , Imunoterapia , Biomarcadores Tumorais/genética
15.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174715

RESUMO

Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Comunicação Celular/genética , Microambiente Tumoral/genética
16.
Biochem Pharmacol ; 211: 115538, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019185

RESUMO

Liver cancer is the most common and frequentlyoccurring cancer. In addition to radiotherapy, chemotherapy and surgery are recommended as part of liver cancer treatment. The efficacy of sorafenib and sorafenib-based combination treatment against tumors has been verified. Although, clinical trials have revealed that some individuals are not sensitive to sorafenib therapy, and current therapeutic approaches are ineffective. Consequently, it is urgent to explore effective drug combinations and innovative techniques for increasing the effectiveness of sorafenib in the curing of liver tumor. Herein, we show that dihydroergotamine mesylate (DHE), an anti-migraine agent, could effectively suppress liver cancer cells proliferation by inhibiting STAT3 activation. However, DHE can enhance the protein stability of Mcl-1 by activating ERK, making DHE less effective in apoptosis induction. Specifically, DHE enhances the effects of sorafenib on liver cancer cells, such as decreased viability and increased apoptosis. Furthermore, the mixture of sorafenib and DHE could enhance DHE-triggered STAT3 suppression and inhibit DHE-mediated ERK-Mcl-1 pathway activation. In vivo, the combination of sorafenib with DHE produced a substantial synergy in suppressing tumour growth and causing apoptosis, ERK inhibition and Mcl-1 degradation. These findings suggest that DHE can effectively inhibit cell proliferation and enhance sorafenib anti-cancer activity in liver cancer cells. The current study provides some new insights that DHE asa novel anti-liver cancer therapeutic agent has been shown to improve treatment outcomes of sorafenib, which might be helpful in order to advance sorafenib in liver cancer therapeutics.


Assuntos
Di-Hidroergotamina , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Di-Hidroergotamina/farmacologia , Di-Hidroergotamina/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias Hepáticas/metabolismo , Apoptose , Linhagem Celular Tumoral , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico
17.
PLoS One ; 18(3): e0281577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913368

RESUMO

Evidence shows that chaperone-mediated autophagy (CMA) is involved in cancer cell pathogenesis and progression. However, the potential role of CMA in breast cancer angiogenesis remains unknown. We first manipulated CMA activity by knockdown and overexpressing of lysosome-associated membrane protein type 2A (LAMP2A) in MDA-MB-231, MDA-MB-436, T47D and MCF7 cells. We found that the tube formation, migration and proliferation abilities of human umbilical vein endothelial cells (HUVECs) were inhibited after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A knockdown. While the above changes were promoted after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A overexpression. Moreover, we found that CMA could promote VEGFA expression in breast cancer cells and in xenograft model through upregulating lactate production. Finally, we found that lactate regulation in breast cancer cells is hexokinase 2 (HK2) dependent, and knockdown of HK2 can significantly reduce the ability of CMA-mediated tube formation capacity of HUVECs. Collectively, these results indicate that CMA could promote breast cancer angiogenesis via regulation of HK2-dependent aerobic glycolysis, which may serve as an attractive target for breast cancer therapies.


Assuntos
Neoplasias da Mama , Autofagia Mediada por Chaperonas , Humanos , Feminino , Neoplasias da Mama/patologia , Autofagia , Meios de Cultivo Condicionados , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicólise , Linhagem Celular Tumoral
18.
Toxins (Basel) ; 14(12)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36548776

RESUMO

Aristolochic acids (AAs) are a group of nitrophenanthrene carboxylic acids present in many medicinal herbs of the Aristolochia genus that may cause irreversible hepatotoxicity, nephrotoxicity, genotoxicity and carcinogenicity. However, the specific profile of AAs and their toxicity in Aristolochia plants, except for AAs Ι and ΙΙ, still remain unclear. In this study, a total of 52 batches of three medicinal herbs belonging to the Aristolochia family were analyzed for their AA composition profiles and AA contents using the UPLC-QTOF-MS/MS approach. The studied herbs were A. mollissima Hance (AMH), A. debilis Sieb.etZucc (ADS), and A. cinnabaria C.Y.Cheng (ACY). Chemometrics methods, including PCA and OPLS-DA, were used for the evaluation of the Aristolochia medicinal herbs. Additionally, cytotoxicity and genotoxicity of the selected AAs and the extracts of AMH and ADS were evaluated in a HepG2 cell line using the MTT method and a Comet assay, respectively. A total of 44 AAs, including 23 aristolochic acids and 21 aristolactams (ALs), were detected in A. mollissima. Moreover, 41 AAs (23 AAs and 18 ALs) were identified from A. debilis Sieb, and 45 AAs (29 AAs and 16 ALs) were identified in A. cinnabaria. Chemometrics results showed that 16, 19, and 22 AAs identified in AMH, ADS, and ACY, respectively, had statistical significance for distinguishing the three medicinal herbs of different origins. In the cytotoxicity assay, compounds AL-BΙΙ, AAΙ and the extract of AMH exhibited significant cytotoxicities against the HepG2 cell line with the IC50 values of 0.2, 9.7 and 50.2 µM, respectively. The results of the Comet assay showed that AAΙ caused relatively higher damage to cellular DNA (TDNA 40-95%) at 50 µM, while AAΙΙ, AMH and ADS extracts (ranged from 10 to 131 µM) caused relatively lower damage to cellular DNA (TDNA 5-20%).


Assuntos
Aristolochia , Ácidos Aristolóquicos , Medicamentos de Ervas Chinesas , Plantas Medicinais , Espectrometria de Massas em Tandem/métodos , Ácidos Aristolóquicos/toxicidade
19.
J Zhejiang Univ Sci B ; 23(11): 943-956, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379613

RESUMO

OBJECTIVES: Primary tumor treatment through surgical resection and adjuvant therapy has been extensively studied, but there is a lack of effective strategies and drugs for the treatment of tumor metastases. Here, we describe a functional product based on a combination of compounds, which can be used as an adjuvant therapy and has well-known mechanisms for inhibiting cancer metastases, improving anti-cancer treatment, and enhancing immunity and antioxidant capacity. Our designed combination, named MVBL, consists of four inexpensive compounds: L-selenium-methylselenocysteine (MSC), D-|α|-tocopheryl succinic acid (VES), ß|-carotene (ß|-Ca), and L-lysine (Lys). METHODS: The effects of MVBL on cell viability, cell cycle, cell apoptosis, cell migration, cell invasion, reactive oxygen species (ROS), and paclitaxel (PTX)-combined treatment were studied in vitro. The inhibition of tumor metastasis, antioxidation, and immune enhancement capacity of MVBL were determined in vivo. RESULTS: MVBL exhibited higher toxicity to tumor cells than to normal cells. It did not significantly affect the cell cycle of cancer cells, but increased their apoptosis. Wound healing, adhesion, and transwell assays showed that MVBL significantly inhibited tumor cell migration, adhesion, and invasion. MVBL sensitized MDA-MB-231 breast cancer cells to PTX, indicating that it can be used as an adjuvant to enhance the therapeutic effect of chemotherapy drugs. In mice, experimental data showed that MVBL inhibited tumor metastasis, prolonged their survival time, and enhanced their antioxidant capacity and immune function. CONCLUSIONS: This study revealed the roles of MVBL in improving immunity and antioxidation, preventing tumor growth, and inhibiting metastasis in vitro and in vivo. MVBL may be used as an adjuvant drug in cancer therapy for improving the survival and quality of life of cancer patients.


Assuntos
Neoplasias , beta Caroteno , Camundongos , Animais , Lisina/farmacologia , Antioxidantes/farmacologia , Qualidade de Vida , Paclitaxel/farmacologia , Apoptose , alfa-Tocoferol , Succinatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1238-1243, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-35981391

RESUMO

OBJECTIVE: To analyze the survival, prognostic factors, and prevention of relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with hematological malignancies, and explore the relationship between immune reconstruction, loss of human leukocyte antigen (HLA-loss) and relapse after transplantation. METHODS: From July 2012 to June 2020, 47 patients with hematological malignancies who relapsed after allo-HSCT were retrospectively analyzed, including 20 cases undergoing matched-sibling donor transplantation (MSD), 26 cases undergoing haploidentical transplantation (HID), and 1 case undergoing matched-unrelated donor transplantation (MUD). Multivariate analysis was used to analyze the risk factors related to post-relapse overall survival (PROS). RESULTS: All the 47 patients were implanted successfully. The cumulative incidence of grade Ⅱ-Ⅳ, Ⅲ/Ⅳ acute graft-versus-host disease (aGVHD) and chronic GVHD (cGVHD) was 40.4%, 10.6%, and 31.9%, respectively. The incidence of grade Ⅱ-Ⅳ and Ⅲ/Ⅳ aGVHD in HID group was 42.3% and 11.5%, while in MD group was 38.1% and 9.5% (P=0.579, P=1.000), and the incidence of cGVHD in the two groups was 34.6% and 28.6% (P=0.659). The PROS of patients with NK cell absolute count > 190 cells/µl 30 days after transplantation was higher than that of patients with NK cell absolute count ≤190 cells/µl (P=0.021). The 1-year and 3-year PROS of all the patients was 68.1% and 28.4%, respectively, while in the HID group was 78.9% and 40.3%, in the MD group was 54.4% and 14% (P=0.048). Multivariate analysis showed that grade Ⅱ-Ⅳ aGVHD and time of relapse < 3 months were independent risk factors of PROS (P<0.05). CONCLUSION: The therapeutic effect of haploidentical transplantation in patients with relapsed hematological malignancies after allo-HSCT is better than that of matched donor transplantation. The high absolute count of NK cells 30 days after transplantation can increase PROS. Grade Ⅱ-Ⅳ aGVHD and time of relapse < 3 months have prognostic significance for long-term survival of patients with relapsed hematological malignancies after transplantation.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/terapia , Humanos , Recidiva Local de Neoplasia , Estudos Retrospectivos , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA