Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 352: 338-370, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206948

RESUMO

Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.


Assuntos
Neoplasias Encefálicas , Glioma , Nanoestruturas , Humanos , Glioma/terapia , Glioma/tratamento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Nanomedicina , Nanoestruturas/uso terapêutico , Barreira Hematoencefálica , Microambiente Tumoral
2.
Colloids Surf B Biointerfaces ; 173: 139-147, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30278362

RESUMO

Here, a heterogeneous Bacillus cereus (B. cereus) biofilm on the surface of 316 L stainless steel (SS) was observed. With electrochemical measurement and surface analysis, it was found that B. cereus biofilm could inhibit SS pitting corrosion, attributing to the blocking effect of bacterial biofilm on extracellular electron transfer (EET). Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) results also showed that B. cereus biofilm clearly impeded the EET. The proposed mechanism for the decreased corrosion rates of SS involves the interactions of extracellular polymeric substance (EPS) with SS and biofilm formation blocking electron transfer, preventing the passive layer from destroying. After biofilm formation following initial attachment of cells and EPS, electron transfer between SS and the cathodic depolarizer (oxygen) was hindered.


Assuntos
Bacillus cereus/química , Biofilmes/crescimento & desenvolvimento , Aço Inoxidável/química , Bacillus cereus/metabolismo , Aderência Bacteriana , Corrosão , Técnicas Eletroquímicas , Transporte de Elétrons , Elétrons , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA