Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 1147-1160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406326

RESUMO

Vitamin K (VK) comprises a group of substances with chlorophyll quinone bioactivity and exists in nature in the form of VK1 and VK2. As its initial recognition originated from the ability to promote blood coagulation, it is known as the coagulation vitamin. However, based on extensive research, VK has shown potential for the prevention and treatment of various diseases. Studies demonstrating the beneficial effects of VK on immunity, antioxidant capacity, intestinal microbiota regulation, epithelial development, and bone protection have drawn growing interest in recent years. This review article focuses on the mechanism of action of VK and its potential preventive and therapeutic effects on infections (eg, asthma, COVID-19), inflammation (eg, in type 2 diabetes mellitus, Alzheimer's disease, Parkinson's disease, cancer, aging, atherosclerosis) and autoimmune disorders (eg, inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis). In addition, VK-dependent proteins (VKDPs) are another crucial mechanism by which VK exerts anti-inflammatory and immunomodulatory effects. This review explores the potential role of VK in preventing aging, combating neurological abnormalities, and treating diseases such as cancer and diabetes. Although current research appoints VK as a therapeutic tool for practical clinical applications in infections, inflammation, and autoimmune diseases, future research is necessary to elucidate the mechanism of action in more detail and overcome current limitations.

2.
Sci Rep ; 14(1): 3075, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321064

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Vitamina K 2/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Metabolismo dos Lipídeos , Adiponectina/metabolismo , Camundongos Endogâmicos C57BL
3.
Int J Mol Med ; 47(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33448308

RESUMO

Vitamin K­dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest­specific protein 6 (Gas 6), Gla­rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.


Assuntos
Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infarto do Miocárdio/metabolismo , Osteoartrite/metabolismo , Insuficiência Renal Crônica/metabolismo , Vitamina K/metabolismo , Animais , Humanos , Infarto do Miocárdio/patologia , Osteoartrite/patologia , Insuficiência Renal Crônica/patologia
4.
Oncol Lett ; 15(6): 8926-8934, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805627

RESUMO

Despite the availability of multiple therapeutic methods for patients with cancer, the long-term prognosis is not satisfactory in a number of different cancer types. Vitamin K2 (VK2), which exerts anticancer effects on a number of cancer cell lines, is considered to be a prospective novel agent for the treatment of cancer. The present review aims to summarize the results of studies in which VK2 was administered either to patients with cancer or animals inoculated with cancerous cells, particularly investigating the inhibitory effects of VK2 on cancerous cells, primarily involving cell-cycle arrest, cell differentiation, apoptosis, autophagy and invasion. The present review summarizes evidence stating that treatment with VK2 could positively inhibit the growth of cancer cells, making it a potentially useful approach for the prevention and clinical treatment of cancer. Additionally, the combination treatment of VK2 and established chemotherapeutics may achieve better results, with fewer side effects. Therefore, more attention should be paid to the effects of micronutrients on tumors.

5.
Eur J Pharmacol ; 814: 73-80, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802718

RESUMO

Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca2+ overload in cardiomyocytes.


Assuntos
Curcumina/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Fenômenos Mecânicos , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Hemodinâmica/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
6.
Sci Rep ; 7: 44623, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294148

RESUMO

Multiple organ dysfunctional syndrome secondary to mechanical trauma (MT) has attracted considerable research attention. The heart is one of the most important organs of the body, and secondary cardiac insufficiency caused by MT seriously affects the quality of life. This study aims to investigate whether proanthocyanidin can alleviate myocardial injury and improve heart function in the process of MT leading to secondary cardiac insufficiency. Noble-Collip drum wasused to prepare MT model in rats. And myocardial apoptosis index was calculated after TUNEL staining. Ventricular intubation was employed to detect heart function. Changes in myocardial ultrastructure were observed using an electron microscope. ELISA was used to detect the content of TNF-α and reactive oxygen species generated from monocytes and cardiomyocytes. The changes in Ca2+ concentration in cardiomyocyte were observed by confocal microscope. Compared with trauma group, the administration group had a decreased apoptosis index of cardiomyocytes, and increased ±dp/dtmax. Meanwhile, proanthocyanidin can inhibit monocytes' TNF-α production, and reduce plasma TNF-α concentration. Moreover, proanthocyanidin can attenuate the excessive oxidative stress reaction of cardiomyocyte, and inhibit calcium overload in cardiomyocytes. In conclusion, proanthocyanidin can effectively ease myocardial damage and improve cardiac function, through anti-inflammatory and antioxidant effects in secondary cardiac insufficiency caused by MT.


Assuntos
Antioxidantes/administração & dosagem , Traumatismos Cardíacos/tratamento farmacológico , Proantocianidinas/administração & dosagem , Ferimentos e Lesões/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/fisiopatologia , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Ferimentos e Lesões/fisiopatologia
7.
Sci Rep ; 6: 30812, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470932

RESUMO

Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca(2+)]i of H9c2 cells were detected using an MTT assay, ELISA, and 2',7'-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 µM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca(2+)]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca(2+) overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma.


Assuntos
Antioxidantes/administração & dosagem , Traumatismos Cardíacos/fisiopatologia , Miócitos Cardíacos/citologia , Quercetina/administração & dosagem , Animais , Antioxidantes/farmacologia , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Apoptosis ; 12(10): 1795-802, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17701456

RESUMO

Whole body non-penetrating trauma causes myocardial infarction in humans and mechanical trauma (MT) results in cardiac dysfunction in animals. Our recent study demonstrated that incubation of cardiomyocytes with plasma isolated from MT animals causes significant cardiomyocyte apoptosis that can be blocked by neutralization of TNFalpha. The present study attempted to obtain direct in vivo evidence to support that overproduction of TNFalpha plays a causative role in trauma-induced cardiomyocyte apoptosis. Non-lethal MT caused significant TNFalpha overproduction (2.4-fold at 1.5 h after MT) and increased cardiomyocyte apoptosis (starting 3 h and peaking 12 h after MT). Pharmacological inhibition of TNFalpha with etanercept or TNFalpha gene deletion reduced post-trauma myocyte apoptosis (P<0.01). Expression of iNOS and NADPH oxidase, overproduction of NO and O2-, and excessive protein nitration in the MT heart were all significantly reduced in etanercept-treated or TNFalpha-/- mice, suggesting that oxidative/nitrative stress may contribute to TNFalpha-initiated myocyte apoptosis in MT hearts. Additional experiments demonstrated that inhibiting iNOS (1400W) or NADPH oxidase (apocynin), or scavenging peroxynitrite (FP15) significantly reduced myocyte apoptosis in MT animals (P<0.01). Collectively, these data demonstrated that non-lethal mechanical trauma caused significant TNFalpha production that in turn stimulated myocardial apoptosis via oxidative/nitrative stress.


Assuntos
Apoptose/fisiologia , Miócitos Cardíacos/fisiologia , Nitritos/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Ferimentos e Lesões , Acetofenonas/metabolismo , Animais , Inibidores Enzimáticos/metabolismo , Humanos , Masculino , Metaloporfirinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia
10.
Am J Physiol Heart Circ Physiol ; 293(3): H1847-52, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17616742

RESUMO

Mechanical traumatic injury causes cardiomyocyte apoptosis and cardiac dysfunction. However, the signaling mechanisms leading to posttraumatic cardiomyocyte apoptosis remains unclear. The present study attempted to identify the molecular mechanisms responsible for cardiomyocyte apoptosis induced by trauma. Normal cardiomyocytes (NC) or traumatic cardiomyocytes (TC; isolated immediately after trauma) were cultured with normal plasma (NP) or traumatic plasma (TP; isolated 1.5 h after trauma) for 12 h, and apoptosis was determined by caspase-3 activation. Exposure of TC to NP failed to induce significant cardiomyocyte apoptosis. In contrast, exposure of NC to TP resulted in a greater than twofold increase in caspase-3 activation (P < 0.01). Incubation of cardiomyocytes with cytomix (a mixture of TNF-alpha, IL-1beta, and IFN-gamma) or TNF-alpha alone, but not with IL-1beta or IFN-gamma alone, caused significant caspase-3 activation (P < 0.01). TP-induced caspase-3 activation was virtually abolished by an anti-TNF-alpha antibody, and TP isolated from TNF-alpha(-/-) mice failed to induce caspase-3 activation. Moreover, incubation of cardiomyocytes with TP upregulated inducible nitric oxide (NO) synthase (iNOS)/NADPH oxidase expression, increased NO/superoxide production, and increased cardiomyocyte protein nitration (measured by nitrotyrosine content). These oxidative/nitrative stresses and the resultant cardiomyocyte caspase-3 activation can be blocked by neutralization of TNF-alpha (anti-TNF-alpha antibody), inhibition of iNOS (1400W), or NADPH oxidase (apocynin) and scavenging of peroxynitrite (FP15) (P < 0.01). Taken together, our study demonstrated that there exists a TNF-alpha-initiated, cardiomyocyte iNOS/NADPH oxidase-dependent, peroxynitrite-mediated signaling pathway that contributes to posttraumatic myocardial apoptosis. Therapeutic interventions that block this signaling cascade may attenuate posttraumatic cardiac injury and reduce the incidence of secondary organ dysfunction after trauma.


Assuntos
Apoptose/fisiologia , Traumatismos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Necrose Tumoral alfa/sangue , Animais , Caspase 3/metabolismo , Células Cultivadas , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/fisiologia
11.
Circulation ; 115(11): 1408-16, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17339545

RESUMO

BACKGROUND: Several clinical studies have demonstrated that levels of adiponectin are significantly reduced in patients with type 2 diabetes and that adiponectin levels are inversely related to the risk of myocardial ischemia. The present study was designed to determine the mechanism by which adiponectin exerts its protective effects against myocardial ischemia/reperfusion. METHODS AND RESULTS: Adiponectin-/- or wild-type mice were subjected to 30 minutes of myocardial ischemia followed by 3 hours or 24 hours (infarct size and cardiac function) of reperfusion. Myocardial infarct size and apoptosis, production of peroxynitrite, nitric oxide (NO) and superoxide, and inducible NO synthase (iNOS) and gp91(phox) protein expression were compared. Myocardial apoptosis and infarct size were markedly enhanced in adiponectin-/- mice (P<0.01). Formation of NO, superoxide, and their cytotoxic reaction product, peroxynitrite, were all significantly higher in cardiac tissue obtained from adiponectin-/- than from wild-type mice (P<0.01). Moreover, myocardial ischemia/reperfusion-induced iNOS and gp91(phox) protein expression was further enhanced, but endothelial NOS phosphorylation was reduced in cardiac tissue from adiponectin-/- mice. Administration of the globular domain of adiponectin 10 minutes before reperfusion reduced myocardial ischemia/reperfusion-induced iNOS/gp91(phox) protein expression, decreased NO/superoxide production, blocked peroxynitrite formation, and reversed proapoptotic and infarct-enlargement effects observed in adiponectin-/- mice. CONCLUSIONS: The present study demonstrates that adiponectin is a natural molecule that protects hearts from ischemia/reperfusion injury by inhibition of iNOS and nicotinamide adenine dinucleotide phosphate-oxidase protein expression and resultant oxidative/nitrative stress.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Superóxidos/metabolismo , Adiponectina/sangue , Adiponectina/genética , Adiponectina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cardiotônicos/farmacologia , Células Cultivadas , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA