RESUMO
BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis.
Assuntos
Propofol , Humanos , Camundongos , Animais , Propofol/farmacologia , Hipóxia , Células Endoteliais da Veia Umbilical Humana , Miócitos Cardíacos , Estresse Oxidativo , Apoptose/fisiologia , Chaperonina com TCP-1RESUMO
Objectives: Cancer-related insomnia (CRI) is one of the most common and serious symptoms in patients with cancer. Acupuncture and moxibustion have been widely applied in the treatment of CRI. Nevertheless, the comparative efficacy and safety of different acupuncture and moxibustion techniques remain unclear. This study aimed to evaluate and compare the efficacy and safety of different acupuncture and moxibustion techniques in the treatment of CRI. Methods: Eight medical databases were comprehensively searched for relevant randomized controlled trials (RCTs) as of June 2022. Two independent reviewers assessed the risk of bias and conducted the research selection, data extraction, and quality assessment of the included RCTs. A network meta-analysis (NMA) was performed using frequency models, combining all available direct and indirect evidence from RCTs. The Pittsburgh Sleep Quality Index (PSQI) was set as the primary outcome, and adverse events and effective rates were set as the secondary outcomes. The efficacy rate was calculated as the ratio of patients with insomnia symptom relief to the total number of patients. Results: Thirty-one RCTs with 3,046 participants were included, including 16 acupuncture- and moxibustion-related therapies. Transcutaneous electrical acupoint stimulation [surface under the cumulative ranking curve (SUCRA) 85.7%] and acupuncture and moxibustion (SUCRA 79.1%) were more effective than Western medicine, routine care, and placebo-sham acupuncture. Furthermore, Western medicine showed significantly better effects than placebo-sham acupuncture. In the NMA, the acupuncture and moxibustion treatments with the best therapeutic effects for CRI were transcutaneous electrical acupoint stimulation (SUCRA 85.7%), acupuncture and moxibustion (SUCRA 79.1%), auricular acupuncture (SUCRA 62.9%), routine care combined with intradermal needling (SUCRA 55.0%), and intradermal needling alone (SUCRA 53.3%). No serious acupuncture- or moxibustion-related adverse events were reported in the included studies. Conclusion: Acupuncture and moxibustion are effective and relatively safe in treating CRI. The relatively conservative recommended order of acupuncture- and moxibustion-related therapies for CRI is as follows: transcutaneous electrical acupoint stimulation, acupuncture and moxibustion, and auricular acupuncture. However, the methodological quality of the included studies was generally poor, and further high-quality RCTs are needed to strengthen the evidence base.
RESUMO
BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis. Highlights Microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs) exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes. Microvesicles from propofol post-treated HUVECs ((HR + P)-EMVs) induced diminished oxidative stress and apoptosis in IR-injured cardiomyocytes compared with microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs). lncCCT4-2 was significantly highly expressed in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs, and reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. lncCCT4-2 inhibited HR-EMVs induced oxidative stress and apoptosis in HR-injured AC16 cells by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in AC16 cells.
Assuntos
Humanos , Animais , Camundongos , Propofol/farmacologia , Apoptose/fisiologia , Estresse Oxidativo , Miócitos Cardíacos , Chaperonina com TCP-1 , Células Endoteliais da Veia Umbilical Humana , HipóxiaRESUMO
N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3'-untranslated regions (3'UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as "Wnt signaling pathway," "ECM-receptor interaction," and "cardiac chamber formation" were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Miócitos Cardíacos/citologia , RNA Mensageiro/genética , Adenosina/química , Animais , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismoRESUMO
Cadmium (Cd) contamination is becoming a significant environmental concern due to its persistency in soil. In the subsurface, the fate and transport of Cd are significantly affected by the presence of organic carriers, including bacteria, which are ubiquitous. In this research, facilitated Cd transport by four different bacterial strains in zeolite was investigated by column experiments under three different Cd introduction scenarios (i.e., a Cd and bacteria mixture, Cd and bacteria introduced separately but simultaneously, and Cd added to the column, followed by bacterial flushing), through which Cd-bacteria complexes formed. In turn, Cd-bacteria complexation affected bacterial transport. Bacteria were least retarded when Cd was pre-deposited, with mass recovery>90% for all strains. More Cd was recovered when introduced as a mixture with bacteria (i.e., Cd mass recovery ranging from 16 to 25%). Obtained bacteria and Cd breakthrough curves were simulated by the attachment-detachment model in Hydrus-1D. Damkohler number and reversibility were both found to be suitable to control the mass recovery of Cd and bacteria in all investigated scenarios.
Assuntos
Cádmio , Poluentes do Solo , Bactérias , Porosidade , SoloRESUMO
BACKGROUND: Flos Genkwa (yuanhua in Chinese), the dried flower buds of Daphne genkwa Sieb.et Zucc. (Thymelaeaceae), is a traditional Chinese medicinal herb mainly used for diuretic, antitussive, expectorant, and anticancer effects. However, systematic and comprehensive studies on Flos Genkwa and its bioactivity are limited. RESULTS: After confirmation of the anti-tumor activity, the 95% ethanolic extract was subjected to successive solvent partitioning to petroleum ether, dichloromethane, n-butanol, and water soluble fractions. Each fraction was tested using the same biological activity model, and the dichloromethane fraction had the highest activity. The dichloromethane fraction was subjected to further chromatographic separation for the isolation of compounds 1-13. Among the 13 compounds, the diterpene esters (compounds 10-13) showed anticancer activity, whereas the flavonoids, lignanoids, and peptides showed moderate activity. Compound 13 was a new daphnane diterpenoid, which was named genkwanin VIII.The preliminary antitumor mechanism of yuanhuacine was studied by protein expression and cell cycle analysis in MCF-7 cancer cells. CONCLUSION: The present investigation tends to support the traditional use of Flos Genkwa for treating cancer. Through bioassay-guided fractionation and isolation techniques, the CH2Cl2 fraction was determined as the active fraction of the flower buds of D. genkwa, and the anti-tumor activity was ascribable to the compounds 10-13.