Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 220: 113995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307313

RESUMO

To find structurally previously undescribed compounds with pharmacological effects from Prismatomeris tetrandra (Roxb.) K. Schum (Rubiaceae), thirteen undescribed tetrahydroanthraquinones (1⎼13) named prisconnatanones J⎼V and seven known anthraquinones (14⎼20) were isolated and characterized. The structures of these compounds were elucidated by detailed spectroscopic analyses, and their absolute configurations were established by modified Mosher's method and ECD calculations. The antitumor cell proliferative activities of prisconnatanones J⎼V were determined. Among them, prisconnatanones J possessed high antitumor cell proliferation in HGC27 cells (IC50, 0.792 µM) by blocking HGC27 cells in the S phase and significantly inducing apoptosis in HGC27 cells. Prisconnatanone J has no cytotoxicity to normal gastric cells line (GES-1) at 10 µM and showed a considerable selectivity for HGC27 cells. Prisconnatanone J can potentially inhibit tumor cell proliferation and should be further investigated.


Assuntos
Rubiaceae , Proliferação de Células , Linhagem Celular Tumoral , Rubiaceae/química , Apoptose , Estrutura Molecular
2.
Front Immunol ; 14: 1330055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259493

RESUMO

Introduction: Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods: We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results: Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion: Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-ß/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.


Assuntos
Acetatos , Fibrose Pulmonar Idiopática , Farmacologia em Rede , Humanos , Animais , Camundongos , Proteômica , Bleomicina , Biologia Computacional
3.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428991

RESUMO

Honokiol, the main bioactive extract of Magnolia officinalis, exhibits extensive therapeutic actions. Its treatment for advanced non-small cell lung cancer is undergoing clinical trials in China. However, the published safety evaluation studies have focused on extract mixtures of Magnolia officinalis in which the honokiol content was well below the reported clinical dose of the honokiol monomer. Therefore, safety assessment of the honokiol monomer is urgently needed. Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 µg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress. By exploring the relationship between time and toxicity, we found that developmental toxic responses were stage-dependent. They mainly occurred within the first 24 h post fertilization (hpf) especially the first 12 hpf. In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 µg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2. In contrast, high dose (0.6 µg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim. By acridine orange staining, we found that a high dose of honokiol microemulsion induced apoptosis mainly in zebrafish brain. In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual effects of honokiol microemulsion on nerve cells. These dual roles of the honokiol microemulsion in oxidation-reduction reactions and apoptosis may be regulated by the forkhead box class O (FoxO) signaling pathway. Due to the potential of developmental toxicity, we recommend that the administration of high dose honokiol microemulsion in pregnant women should be considered with caution.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Ratos , Animais , Humanos , Gravidez , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Apoptose , Transdução de Sinais , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo
4.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32075933

RESUMO

African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Cisteína Endopeptidases/química , Proteínas Virais/química , Febre Suína Africana/virologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Simulação de Dinâmica Molecular , Poliproteínas/química , Conformação Proteica , Domínios Proteicos , Proteína SUMO-1 , Alinhamento de Sequência , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
BMC Genet ; 20(1): 94, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805867

RESUMO

BACKGROUND: Tea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola. RESULTS: We characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca. oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi. CONCLUSION: This study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.


Assuntos
Camellia/microbiologia , Colletotrichum/patogenicidade , Proteínas Serina-Treonina Quinases/genética , Carbono/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Filogenia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA