Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573442

RESUMO

The modulation of dynamic histone acetylation states is key for organizing chromatin structure and modulating gene expression and is regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes. The mammalian SIRT6 protein, a member of the Class III HDAC Sirtuin family of NAD+-dependent enzymes, plays pivotal roles in aging, metabolism, and cancer biology. Through its site-specific histone deacetylation activity, SIRT6 promotes chromatin silencing and transcriptional regulation of aging-associated, metabolic, and tumor suppressive gene expression programs. ATP citrate lyase (ACLY) is a nucleo-cytoplasmic enzyme that produces acetyl coenzyme A (acetyl-CoA), which is the required acetyl donor for lysine acetylation by HATs. In addition to playing a central role in generating cytosolic acetyl-CoA for de novo lipogenesis, a growing body of work indicates that ACLY also functions in the nucleus where it contributes to the nutrient-sensitive regulation of nuclear acetyl-CoA availability for histone acetylation in cancer cells. In this study, we have identified a novel function of SIRT6 in controlling nuclear levels of ACLY and ACLY-dependent tumor suppressive gene regulation. The inactivation of SIRT6 in cancer cells leads to the accumulation of nuclear ACLY protein and increases nuclear acetyl-CoA pools, which in turn drive locus-specific histone acetylation and the expression of cancer cell adhesion and migration genes that promote tumor invasiveness. Our findings uncover a novel mechanism of SIRT6 in suppressing invasive cancer cell phenotypes and identify acetyl-CoA responsive cell migration and adhesion genes as downstream targets of SIRT6.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Histonas/metabolismo , Neoplasias/patologia , Sirtuínas/metabolismo , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/metabolismo , Acetilação , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Fenótipo , Sirtuínas/genética
2.
Nat Immunol ; 22(6): 711-722, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017121

RESUMO

Chromatin undergoes extensive reprogramming during immune cell differentiation. Here we report the repression of controlled histone H3 amino terminus proteolytic cleavage (H3ΔN) during monocyte-to-macrophage development. This abundant histone mark in human peripheral blood monocytes is catalyzed by neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase and proteinase 3. NSPs are repressed as monocytes mature into macrophages. Integrative epigenomic analysis reveals widespread H3ΔN distribution across the genome in a monocytic cell line and primary monocytes, which becomes largely undetectable in fully differentiated macrophages. H3ΔN is enriched at permissive chromatin and actively transcribed genes. Simultaneous NSP depletion in monocytic cells results in H3ΔN loss and further increase in chromatin accessibility, which likely primes the chromatin for gene expression reprogramming. Importantly, H3ΔN is reduced in monocytes from patients with systemic juvenile idiopathic arthritis, an autoinflammatory disease with prominent macrophage involvement. Overall, we uncover an epigenetic mechanism that primes the chromatin to facilitate macrophage development.


Assuntos
Artrite Juvenil/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/imunologia , Adolescente , Artrite Juvenil/sangue , Artrite Juvenil/genética , Sistemas CRISPR-Cas/genética , Catepsina G/genética , Catepsina G/metabolismo , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Cromatina/metabolismo , Ensaios Enzimáticos , Epigenômica , Feminino , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/metabolismo , Masculino , Mieloblastina/genética , Mieloblastina/metabolismo , Cultura Primária de Células , Proteólise , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células THP-1 , Adulto Jovem
3.
Sci Rep ; 10(1): 17425, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060621

RESUMO

The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3ß and CK1 to earmark ß-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of ß-catenin and oncogenesis. However, the molecular mechanism by which APC promotes ß-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple ß-catenin and Axin interacting sites, undergoes liquid-liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and ß-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the ß-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of ß-catenin.


Assuntos
Proteína Axina/metabolismo , Genes APC , beta Catenina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Proteólise
4.
Cancer Cell ; 37(6): 834-849.e13, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442403

RESUMO

Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts. SETD5 lacks histone methyltransferase activity but scaffolds a co-repressor complex, including HDAC3 and G9a. Gene silencing by the SETD5 complex regulates known drug resistance pathways to reprogram cellular responses to MEKi. Pharmacological co-targeting of MEK1/2, HDAC3, and G9a sustains PDAC tumor growth inhibition in vivo. Our work uncovers SETD5 as a key mediator of acquired MEKi therapy resistance in PDAC and suggests a context for advancing MEKi use in the clinic.


Assuntos
Cromatina/genética , Resistencia a Medicamentos Antineoplásicos , Metiltransferases/metabolismo , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Rep ; 9(1): 14226, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578417

RESUMO

Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein ß-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats.


Assuntos
Ácidos Graxos/metabolismo , Sequências Repetitivas de Aminoácidos , Acilação , Linhagem Celular , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Ontologia Genética , Humanos , Lipidômica/métodos , Lisina/química , Ácido Mirístico/química , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , beta Catenina/química , beta Catenina/metabolismo
6.
J Biol Chem ; 293(28): 11242-11250, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29728458

RESUMO

In the yeast Saccharomyces cerevisiae, genomic instability in rDNA repeat sequences is an underlying cause of cell aging and is suppressed by the chromatin-silencing factor Sir2. In humans, rDNA instability is observed in cancers and premature aging syndromes, but its underlying mechanisms and functional consequences remain unclear. Here, we uncovered a pivotal role of sirtuin 7 (SIRT7), a mammalian Sir2 homolog, in guarding against rDNA instability and show that this function of SIRT7 protects against senescence in primary human cells. We found that, mechanistically, SIRT7 is required for association of SNF2H (also called SMARCA5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A, member 5), a component of the nucleolar heterochromatin-silencing complex NoRC, with rDNA sequences. Defective rDNA-heterochromatin silencing in SIRT7-deficient cells unleashed rDNA instability, with excision and loss of rDNA gene copies, which in turn induced acute senescence. Mounting evidence indicates that accumulation of senescent cells significantly contributes to tissue dysfunction in aging-related pathologies. Our findings identify rDNA instability as a driver of mammalian cellular senescence and implicate SIRT7-dependent heterochromatin silencing in protecting against this process.


Assuntos
Neoplasias Ósseas/patologia , Senescência Celular , DNA Ribossômico/genética , Epigênese Genética , Instabilidade Genômica , Osteossarcoma/patologia , Sirtuínas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Sirtuínas/genética , Transcrição Gênica , Células Tumorais Cultivadas
7.
Angew Chem Int Ed Engl ; 56(4): 1007-1011, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27990725

RESUMO

Sirtuins are protein deacylases regulating metabolism and stress responses, and are implicated in aging-related diseases. Small molecule activators for the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, such as for cancer. Activators are available for Sirt1 and exploit its unique N-terminus, whereas drug-like activators for Sirt2-7 are lacking. We synthesized and screened pyrrolo[1,2-a]quinoxaline derivatives, yielding the first synthetic Sirt6 activators. Biochemical assays show direct, substrate-independent compound binding to the Sirt6 catalytic core and potent activation of Sirt6-dependent deacetylation of peptide substrates and complete nucleosomes. Crystal structures of Sirt6/activator complexes reveal that the compounds bind to a Sirt6-specific acyl channel pocket and identify key interactions. Our results establish potent Sirt6 activation with small molecules and provide a structural basis for further development of Sirt6 activators as tools and therapeutics.


Assuntos
Pirróis/metabolismo , Quinoxalinas/metabolismo , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Pirróis/química , Quinoxalinas/química , Sirtuínas/química , Bibliotecas de Moléculas Pequenas/química
8.
J Biol Chem ; 289(49): 34205-13, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25344604

RESUMO

E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Senescência Celular/genética , Fator de Transcrição E2F1/genética , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/genética , Envelhecimento/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Embrião de Mamíferos , Fibroblastos/citologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Longevidade/genética , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA