Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404073, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757622

RESUMO

Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.

2.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778121

RESUMO

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Assuntos
Artemisininas , Proliferação de Células , Dano ao DNA , Receptores ErbB , GTP Fosfo-Hidrolases , Neoplasias Pulmonares , Proteínas de Membrana , Transdução de Sinais , Receptores ErbB/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Artemisininas/farmacologia , Dano ao DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Células A549 , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica
3.
Hepatology ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779918

RESUMO

BACKGROUND AIMS: Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH RESULTS: We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in hepatocellular carcinoma patients. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from natural killer (NK) cell killing by upregulating inhibitory checkpoint CD155, therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another two receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS: Our results demonstrated CTC evasion from NK cell-mediated innate immunosurveillance mainly via immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167234, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38750769

RESUMO

The 5-year survival for non-small cell lung cancer (NSCLC) remains <20 %, primarily due to the early symptoms of lung cancer are inconspicuous. Prompt identification and medical intervention could serve as effective strategies for mitigating the death rate. We therefore set out to identify biomarkers to help diagnose NSCLC. CircRNA microarray and qRT-PCR reveal that sputum circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC, which can enhance the proliferation and clone formation, regulate the cell cycle, and accelerate the migration and invasion of NSCLC cells. Circ_0006949 and miR-4673 are predominantly co-localized in the cytoplasm of NSCLC cell lines and tissues; it upregulates GLUL by adsorption of miR-4673 through competing endogenous RNAs mechanism. The circ_0006949/miR-4673/GLUL axis exerts pro-cancer effects in vitro and in vivo. Circ_0006949 can boost GLUL catalytic activity, and they are highly expressed in NSCLC tissues and correlate with poor prognosis. In summary, circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC. This novel sputum circRNA is statistically more predictive than conventional serum markers for NSCLC diagnosis. Non-invasive detection of patients with early-stage NSCLC using sputum has shown good potential for routine diagnosis and possible screening.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38695706

RESUMO

BACKGROUND: Screening with anti-Epstein-Barr Virus (EBV) serology and endoscopy decreased nasopharyngeal carcinoma (NPC) mortality in Guangdong in a randomized trial. We conducted a secondary analysis of this trial using local incidence and cost data to optimize screening programs, hypothesizing that screening could be cost-effective in southern China. METHODS: Screening costs and life-years after NPC diagnosis were obtained from the Guangdong trial's intent-to-screen population (men and women age 30-69). Seropositive subjects were rescreened annually for five years. Thereafter, we evaluated 12 screening strategies in Guangdong and Guangxi using a validated model. Strategies used combinations of serology, nasopharyngeal swab PCR (NP PCR), endoscopy, and MRI from trial sub-cohorts. Incidence data and costs were obtained from local cancer registries and the provincial healthcare system. RESULTS: In the intent-to-screen population, screening with serology and endoscopy was cost-effective (¥42,366/life-year, 0.52 GDP per-capita). Screening for 5-15 years between ages 35-59 met a willingness-to-pay threshold of 1.5 GDP/QALY in all modeled populations. Despite doubling costs, adding MRI could be cost-effective via improved sensitivity. NP PCR triage reduced endoscopy/MRI referrals by 37%. One lifetime screen could reduce NPC mortality by pproximately 20%. CONCLUSIONS: EBV-based serologic screening for NPC is likely to be cost-effective in southern China. Among seropositive subjects, the preferred strategies use endoscopy alone or selective endoscopy triaged by MRI with or without NP PCR. These data may aid the design of screening programs in this region. IMPACT: These findings support population-based screening in southern China by defining the target population, cost effectiveness, and optimized screening approach.

6.
Orthop Surg ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706035

RESUMO

OBJECTIVES: The micro-nano structure of 3D-printed porous titanium (Ti) alloy with excellent performance in avoiding stress shielding and promoting bone tissue differentiation provides a new opportunity for the development of bone implants, but it necessitates higher requirements for bone tissue differentiation and the antibacterial properties of bone implants in clinical practice. METHODS: This study investigated the preparation, antimicrobial properties, and osteogenesis-promoting ability of the 3D printed porous Ti alloy anodic oxidized Ag-carrying (Ag@3D-TiO2) scaffolds. The 3D printed porous Ti alloy (3D-Ti), anodized 3D printed porous Ti alloy (3D-TiO2), and Ag@3D-TiO2 scaffolds were synthesized using electron beam melting. The antimicrobial properties of the scaffolds were examined using antibacterial tests and their cytocompatibility was assessed using a cell proliferation assay and acridine orange/ethidium bromide (AO/EB) staining. In vitro cellular assays were used to investigate the effects of the scaffold microstructural features on cell activity, proliferation, and osteogenesis-related genes and proteins. In vivo animal experiments were used to evaluate the anti-inflammatory and osteogenesis-promoting abilities of the scaffolds. RESULTS: The Ag@3D-TiO2 scaffolds exhibited sustained anti-microbial activity over time, enhanced cell proliferation, facilitated osteogenic differentiation, and increased extracellular matrix mineralization. In addition, alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN)-related genes and proteins were upregulated. In vivo animal implantation experiments, the anti-inflammatory effect of the Ag@3D-TiO2 scaffolds were observed using histology, and a large amount of fibrous connective tissue was present around it; the Ag@3D-TiO2 scaffolds were more bio-compatible with the surrounding tissues compared with 3D-Ti and 3D-TiO2; a large amount of uniformly distributed neoplastic bone tissue existed in their pores, and the chronic systemic toxicity test showed that the 3D-Ti, 3D-TiO2, and Ag@3D-TiO2 scaffolds are biologically safe. CONCLUSION: The goal of this study was to create a scaffold that exhibits antimicrobial properties and can aid bone growth, making it highly suitable for use in bone tissue engineering.

7.
Phytother Res ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761036

RESUMO

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

8.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669875

RESUMO

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Assuntos
Adenosina , Carcinogênese , Poluentes Ambientais , Adenosina/análogos & derivados , Carcinogênese/induzido quimicamente , Poluentes Ambientais/toxicidade , Humanos , Metilação , Animais , RNA/genética , Metilação de RNA
9.
Adv Mater ; : e2314271, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569202

RESUMO

Transition metal chalcogenides (TMCs) emerge as promising anode materials for sodium-ion batteries (SIBs), heralding a new era of energy storage solutions. Despite their potential, the mechanisms underlying their performance enhancement and susceptibility to failure in ether-based electrolytes remain elusive. This study delves into these aspects, employing CoS2 electrodes as a case in point to elucidate the phenomena. The investigation reveals that CoS2 undergoes a unique irreversible and progressive solid-liquid-solid phase transition from its native state to sodium polysulfides (NaPSs), and ultimately to a Cu1.8S/Co composite, accompanied by a gradual morphological transformation from microspheres to a stable 3D porous architecture. This reconstructed 3D porous structure is pivotal for its exceptional Na+ diffusion kinetics and resilience to cycling-induced stress, being the main reason for ultrastable cycling and ultrahigh rate capability. Nonetheless, the CoS2 electrode suffers from an inevitable cycle life termination due to the microshort-circuit induced by Na metal corrosion and separator degradation. Through a comparative analysis of various TMCs, a predictive framework linking electrode longevity is established to electrode potential and Gibbs free energy. Finally, the cell failure issue is significantly mitigated at a material level (graphene encapsulation) and cell level (polypropylene membrane incorporation) by alleviating the NaPSs shuttling and microshort-circuit.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38597996

RESUMO

We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.

11.
ACS Omega ; 9(12): 14489-14499, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559975

RESUMO

Endometrial cancer (EC) is a frequently diagnosed gynecologic cancer. Identifying reliable prognostic genes for predicting EC onset is crucial for reducing patient morbidity and mortality. Here, a comprehensive strategy with transcriptomic and proteomic data was performed to measure EC's characteristics. Based on the publicly available RNA-seq data, death-associated protein kinase 3, recombination signal-binding protein for the immunoglobulin kappa J region, and myosin light chain 9 were screened out as potential biomarkers that affect the EC patients' prognosis. A linear model was further constructed by multivariate Cox regression for the prediction of the risk of being malignant. From further integrative analysis, exosomes were found to have a highly enriched role that might participate in EC occurrence. The findings were validated by qRT-polymerase chain reaction (PCR) and western blotting. Collectively, we constructed a prognostic-gene-based model for EC prediction and found that exosomes participate in EC incidents, revealing significantly promising support for the diagnosis of EC.

12.
Heliyon ; 10(7): e28465, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596109

RESUMO

Background: Grade IV circular hemorrhoids are difficult to treat. We aim to describe the modified whitehead hemorrhoidectomy procedure and to assess the effectiveness and safety of this procedure for grade IV circular hemorrhoid patients. Methods: Patients with grade Ⅳ circular hemorrhoids who underwent modified Whitehead hemorrhoidectomy and partial hemorrhoidectomy for fourth-degree circular mixed hemorrhoids were retrospectively reviewed. Clinical data were extracted from the database at our institution, and long-term postoperative complications were assessed through repeated outpatient examinations and telephonic communication. Results: A total of 205 patients were included in this study. The mean operative time was 59.2 ± 13.8 min. The average hospital stay was 4.6 ± 1.0 days. For postoperative complications, 66 (32.2%) patients had urinary retention, 10 (4.9%) patients had a sense of incomplete rectal emptying, 5 (2.4%) patients had anal incontinence, and 6 (2.9%) patients had wound infection. For long-term postoperative complications, 3 (1.5%) patients experienced mild to moderate anal stricture, 2 (1%) patients experienced mucosal ectropion, they all had smooth recoveries, and none of them needed secondary surgery. None of these patients had a hemorrhoid recurrence. A total of 205 patients who received modified Whitehead hemorrhoidectomy and 161 who received partial hemorrhoidectomy were included. There were no residual hemorrhoids in patients who received modified Whitehead hemorrhoidectomy, and none had hemorrhoid recurrence. Fifty-eight patients who received partial hemorrhoidectomy had hemorrhoidal residues, and 19 patients experienced hemorrhoid recurrence. After modified Whitehead hemorrhoidectomy, 3 patients developed anal stenosis, and 2 had mucosal ectropion. Four patients developed anal stricture after partial hemorrhoidectomy, and none had mucosal ectropion. They all had smooth recoveries, and none of them needed a secondary surgery. For the mean duration of surgery, postoperative bleeding, postoperative pain, wound infection, sense of incomplete rectal emptying, anal incontinence, and urinary retention, no statistically significant differences were found between the two groups. Conclusions: Compared with partial hemorrhoidectomy, modified whitehead hemorrhoidectomy is an effective and safe surgical procedure and does not significantly increase the risk of anal stenosis and mucosal ectropion for grade IV circular hemorrhoid patients. Prospective randomized controlled trials are needed to verify our results.

13.
Front Cell Infect Microbiol ; 14: 1322119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638825

RESUMO

Background: Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods: Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1ß and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results: Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1ß and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion: Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.


Assuntos
Cistite , Infecções por Escherichia coli , Doenças do Sistema Imunitário , Infecções Urinárias , Escherichia coli Uropatogênica , Feminino , Camundongos , Animais , Bexiga Urinária/microbiologia , NF-kappa B , Levofloxacino/farmacologia , Galectina 3 , Interleucina-6 , Receptor 4 Toll-Like , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia
14.
Anal Chem ; 96(17): 6774-6783, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634427

RESUMO

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Linhagem Celular Tumoral
15.
J Neurointerv Surg ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38580442

RESUMO

BACKGROUND: Studies reporting spontaneous delayed migration or shortening (SDMS) after treatment with the Pipeline Embolization Device (PED) are limited. This study aimed to evaluate the incidence of SDMS after PED treatment, propose management strategies, and identify the risk factors contributing to its occurrence. METHODS: We retrospectively reviewed consecutive patients with an intracranial aneurysm (IA) treated with PEDs at three institutions. SDMS was classified as type I or II based on whether the PED covered the aneurysm neck. RESULTS: The total cohort comprised 790 patients. SDMS was identified in 24 (3.04%) patients. Eighteen of the 24 patients had type I SDMS and did not require retreatment, while the remaining six patients had type II SDMS and all received retreatment. Multivariate logistic regression showed that the difference between the proximal and distal parent artery diameters (DPAD) (adjusted OR 2.977; 95% CI 1.054 to 8.405; P=0.039) and device tortuosity index (DTI) (adjusted OR 8.059; 95% CI 2.867 to 23.428; P<0.001) were independent predictors of SDMS after PED treatment, while the difference in length (DL) (adjusted OR 0.841; 95% CI 0.738 to 0.958; P=0.009) and PED plus coiling (adjusted OR 0.288; 95% CI 0.106 to 0.785; P=0.015) were protective factors. CONCLUSION: The incidence of SDMS after PED treatment of IA was 3.04%. For patients with type I SDMS with incomplete aneurysm occlusion we recommend continuous imaging follow-up while, for patients with type II SDMS, we recommend aggressive retreatment. The DPAD and DTI were independent risk predictors of SDMS after PED treatment, while the DL and PED plus coiling were protective factors.

16.
Front Immunol ; 15: 1368516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601146

RESUMO

Background: Differences in border zone contribute to different outcomes post-infarction, such as left ventricular aneurysm (LVA) and myocardial infarction (MI). LVA usually forms within 24 h of the onset of MI and may cause heart rupture; however, LVA surgery is best performed 3 months after MI. Few studies have investigated the LVA model, the differences in border zones between LVA and MI, and the mechanism in the border zone. Methods: The LVA, MI, and SHAM mouse models were used. Echocardiography, Masson's trichrome staining, and immunofluorescence staining were performed, and RNA sequencing of the border zone was conducted. The adipocyte-conditioned medium-treated hypoxic macrophage cell line and LVA and MI mouse models were employed to determine the effects of the hub gene, adiponectin (ADPN), on macrophages. Quantitative polymerase chain reaction (qPCR), Western blot analysis, transmission electron microscopy, and chromatin immunoprecipitation (ChIP) assays were conducted to elucidate the mechanism in the border zone. Human subepicardial adipose tissue and blood samples were collected to validate the effects of ADPN. Results: A novel, simple, consistent, and low-cost LVA mouse model was constructed. LVA caused a greater reduction in contractile functions than MI owing to reduced wall thickness and edema in the border zone. ADPN impeded cardiac edema and promoted lymphangiogenesis by increasing macrophage infiltration post-infarction. Adipocyte-derived ADPN promoted M2 polarization and sustained mitochondrial quality via the ADPN/AdipoR2/HMGB1 axis. Mechanistically, ADPN impeded macrophage HMGB1 inflammation and decreased interleukin-6 (IL6) and HMGB1 secretion. The secretion of IL6 and HMGB1 increased ADPN expression via STAT3 and the co-transcription factor, YAP, in adipocytes. Based on ChIP and Dual-Glo luciferase experiments, STAT3 promoted ADPN transcription by binding to its promoter in adipocytes. In vivo, ADPN promoted lymphangiogenesis and decreased myocardial injury after MI. These phenotypes were rescued by macrophage depletion or HMGB1 knockdown in macrophages. Supplying adipocytes overexpressing STAT3 decreased collagen disposition, increased lymphangiogenesis, and impaired myocardial injury. However, these effects were rescued after HMGB1 knockdown in macrophages. Overall, the IL6/ADPN/HMGB1 axis was validated using human subepicardial tissue and blood samples. This axis could serve as an independent factor in overweight MI patients who need coronary artery bypass grafting (CABG) treatment. Conclusion: The IL6/ADPN/HMGB1 loop between adipocytes and macrophages in the border zone contributes to different clinical outcomes post-infarction. Thus, targeting the IL6/ADPN/HMGB1 loop may be a novel therapeutic approach for cardiac lymphatic regulation and reduction of cell senescence post-infarction.


Assuntos
Proteína HMGB1 , Infarto do Miocárdio , Camundongos , Animais , Humanos , Interleucina-6/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Retroalimentação , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Adipócitos/metabolismo
17.
J Pharm Anal ; 14(3): 348-370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618251

RESUMO

Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aß42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aß42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.

18.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
19.
Environ Toxicol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682322

RESUMO

OBJECTIVE: Polyunsaturated fatty acids (PUFAs) have attracted increasing attention for their role in liver cancer development. The objective of this study is to develop a prognosis prediction model for patients with liver cancer based on PUFA-related metabolic gene characteristics. METHOD: Transcriptome data and clinical data were obtained from public databases, while gene sets related to PUFAs were acquired from the gene set enrichment analysis (GSEA) database. Univariate Cox analysis was conducted on the training set, followed by LASSO logistic regression and multivariate Cox analysis on genes with p < .05. Subsequently, the stepwise Akaike information criterion method was employed to construct the model. The high- and low-risk groups were divided based on the median score, and the model's survival prediction ability, diagnostic efficiency, and risk score distribution of clinical features were validated. The above procedures were also validated in the validation set. Immune infiltration levels were evaluated using four algorithms, and the immunotherapeutic potential of different groups was explored. Significant enrichment pathways among different groups were selected based on the GSEA algorithm, and mutation analyses were conducted. Nomogram prognostic models were constructed by incorporating clinical factors and risk scores using univariate and multivariate Cox regression analysis, validated through calibration curves and clinical decision curves. Additionally, sensitivity analysis of drugs was performed to screen potential targeted drugs. RESULTS: We constructed a prognostic model comprising eight genes (PLA2G12A, CYP2C8, ABCCI, CD74, CCR7, P2RY4, P2RY6, and YY1). Validation across multiple datasets indicated the model's favorable prognostic prediction ability and diagnostic efficiency, with poorer grading and staging observed in the high-risk group. Variations in mutation status and pathway enrichment were noted among different groups. Incorporating Stage, Grade, T.Stage, and RiskScore into the nomogram prognostic model demonstrated good accuracy and clinical decision benefits. Multiple immune analyses suggested greater benefits from immunotherapy in the low-risk group. We predicted multiple targeted drugs, providing a basis for drug development. CONCLUSION: Our study's multifactorial prognostic model across multiple datasets demonstrates good applicability, offering a reliable tool for personalized therapy. Immunological and mutation-related analyses provide theoretical foundations for further research. Drug predictions offer important insights for future drug development and treatment strategies. Overall, this study provides comprehensive insights into tumor prognosis assessment and personalized treatment planning.

20.
Eur J Drug Metab Pharmacokinet ; 49(3): 383-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564097

RESUMO

BACKGROUND AND OBJECTIVE: GB221 is a recombinant humanized anti-HER2 monoclonal antibody. The purpose of this study was to evaluate the pharmacokinetic, safety, and immunogenicity of GB221 in healthy Chinese adults in comparison to trastuzumab (Herceptin®). METHODS: In this randomized, double-blind, parallel-group phase I clinical trial, 88 subjects were randomized 1:1 to receive a single intravenous infusion (90-100 min) of GB221 or trastuzumab (6 mg/kg). The primary pharmacokinetic parameters-maximum observed serum concentration (Cmax), area under the serum concentration-time curve from zero to the last quantifiable concentration at time t (AUC0-t), and area under the serum concentration-time curve from time zero to infinity (AUC0-∞)-of GB221 and trastuzumab were compared to establish whether the 90% confidence interval (CI) attained the 80-125% bioequivalence standard. Safety and immunogenicity were also evaluated. RESULTS: The GB221 group (n = 43) and the trastuzumab group (n = 44) showed similar pharmacokinetic characteristics. The geometric mean ratios (90% CI) of Cmax, AUC0-t, and AUC0-∞ between the two groups were 107.53% (102.25-113.07%), 108.31% (103.57-113.26%), and 108.34% (103.57-113.33%), respectively. The incidence of treatment-emergent adverse events (TEAEs) was 83.7% (36/43) of the subjects in the GB221 group and 95.5% (42/44) of the subjects in the trastuzumab group. No subjects withdrew from the trial due to TEAEs, and there were no occurrences of serious adverse events. All subjects tested negative for antidrug antibodies (ADA). CONCLUSION: GB221 demonstrated similar pharmacokinetics to trastuzumab and comparable safety and immunogenicity in healthy Chinese adults.


Assuntos
Antineoplásicos Imunológicos , Área Sob a Curva , Equivalência Terapêutica , Trastuzumab , Humanos , Trastuzumab/farmacocinética , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos , Adulto , Masculino , Método Duplo-Cego , Feminino , Adulto Jovem , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Povo Asiático , Infusões Intravenosas , Pessoa de Meia-Idade , Voluntários Saudáveis , Receptor ErbB-2/imunologia , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA