RESUMO
Extracellular polymeric substances (EPS) are an important medium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron (oxyhydr) oxides production which reduced arsenic (As) availability. The main component of EPS secreted by iron-oxidizing bacteria (Ochrobactrum EEELCW01) was composed of polysaccharides (150.76-165.33 mg/g DW) followed by considerably smaller amounts of proteins (12.98-16.12 mg/g DW). Low concentrations of As (100 or 500 µmol/L) promoted the amount of EPS secretion. FTIR results showed that EPS was composed of polysaccharides, proteins, and a miniscule amount of nucleic acids. The functional groups including -COOH, -OH, -NH, -C=O, and -C-O played an important role in the adsorption of As. XPS results showed that As was bound to EPS in the form of As3+. With increasing As concentration, the proportion of As3+ adsorbed on EPS increased. Ferrihydrite with a weak crystalline state was only produced in the system at 6 hr during the mineralization process of Ochrobactrum sp. At day 8, the minerals were composed of goethite, galena, and siderite. With the increasing mineralization time, the main mineral phases were transformed from weakly crystalline hydrous iron ore into higher crystallinity siderite (FeCO3) or goethite (α-FeOOH), and the specific surface area and active sites of minerals were reduced. It can be seen from the distribution of As elements that As is preferentially adsorbed on the edges of iron minerals. This study is potential to understand the biomineralization mechanism of iron-oxidizing bacteria and As remediation in the environment.
Assuntos
Arsênio , Arsênio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Compostos Férricos/química , Minerais/química , Ferro , Polissacarídeos , Bactérias/metabolismo , OxirreduçãoRESUMO
Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRTâPCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.
Assuntos
Lonicera , Plantas Medicinais , Lonicera/genética , Lonicera/metabolismo , Ácido Clorogênico/metabolismo , Folhas de Planta/metabolismo , Plantas Medicinais/metabolismo , Vias BiossintéticasRESUMO
Smelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized. The heavy metal pollution was analyzed from a macroscopic point of view. The results indicated that Pb, Zn, As and Cd were common contaminants that were present in soils with extremely high concentrations. Because of the extreme carcinogenicity, genotoxicity and neurotoxicity that heavy metals pose, remediation of the soils contaminated by smelting is urgently required. The primary anthropogenic activities contributing to soil pollution in smelting areas and the progressive development of accurate source identification were performed. Due to the advantages of biominerals, the potential of biomineralization for heavy metal contaminated soils was introduced. Furthermore, the prospects of geochemical fraction analysis, combined source identification methods as well as several optimization methods for biomineralization are presented, to provide a reference for pollution investigation and remediation in smelting contaminated soils in the future.
Assuntos
Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Chumbo/análise , Biomineralização , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental/análise , Solo , China , Zinco/análise , Medição de RiscoRESUMO
Arsenic (As) biotransformation in soil affects As biogeochemical cycling and is associated with As accumulation in rice. After inoculation with 1% iron-oxidizing bacteria (FeOB) in paddy soil, As speciation, As biotransformation genes in soil, As/Fe in Fe plaques, and As accumulation in rice were characterized. Compared with the control, the available As concentrations in soils decreased while amorphous and poorly crystalline Fe-Al oxidized As and crystalline Fe-Al oxidized As fractions increased of F (FeOB) and RF (rice and FeOB) treatments. Fe concentrations increased and positively correlated with As concentrations in Fe plaques on the rice root surface (***P < 0.001). Compared with R (rice), Monomethyl As (MMA), dimethyl As (DMA), arsenate (As(V)), and arsenite (As(III)) concentrations in rice plants showed a downwards trend of RF treatment. The As concentration in grains was below the National Standard for Food Safety (GB 2762-2017). A total of 16 As biotransformation genes in rhizosphere soils of different treatments (CK, F, R and RF were quantified by high-throughput qPCR (HT-qPCR). Compared with the control, the As(V) reduction and As transport genes abundance in other treatments increased respectively by 54.54%-69.17% and 54.63%-73.71%; the As(III) oxidation and As (de) methylation genes did not change significantly; however, several As(III) oxidation genes (aoxA, aoxB, aoxS, and arsH) increased. These results revealed that FeOB could reduce, transport As, and maybe also oxidize As. In addition, As(III) oxidation gene (aoxC) in rhizosphere soil was more abundant than in non-rhizosphere soil. It indicated that radial oxygen loss (ROL) promoted As(III) oxidation in rhizosphere soils. The results provide evidence for As biotransformation by ROL and FeOB in soil-rice system. ROL affects As oxidation and immobilization, and FeOB affects As reduction, transportation and may also affect As oxidation.
Assuntos
Arsênio , Arsenitos , Ochrobactrum , Oryza , Poluentes do Solo , Arsênio/análise , Solo/química , Oryza/metabolismo , Arseniatos/metabolismo , Arsenitos/metabolismo , Ferro/química , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Biotransformação , Oxirredução , Oxigênio/análiseRESUMO
Iron-oxidizing bacteria (FeOB) could oxidize Fe(II) and mediate biomineralization, which provides the possibility for its potential application in arsenic (As) remediation. In the present study, a strain named Ochrobactrum EEELCW01 isolated previously, was inoculated into paddy soils to investigate the effect of FeOB inoculation on the As migration and transformation in paddy soils. The results showed that inoculation of Ochrobactrum sp. increased the proportion of As in iron-aluminum oxide binding fraction, which reduced the As bioavailability in paddy soils and effectively reduced the As accumulation in rice tissues. Moreover, the inoculation of iron oxidizing bacteria increased the abundance of KD4-96, Pedosphaeraceae and other bacteria in the soils, which could reduce the As toxicity in the soil through biotransformation. The abundance of metabolites such as carnosine, MG (0:0/14:0/0:0) and pantetheine 4'-phosphate increased in rhizosphere soils inoculated with FeOB, which indicated that the defense ability of soil-microorganism-plant system against peroxidation caused by As was enhanced. This study proved that FeOB have the potential application in remediation of As pollution in paddy soil, FeOB promotes the formation of iron oxide in paddy soil, and then adsorbed and coprecipitated with arsenic. On the other hand, the inoculation of Ochrobactrum sp. change soil microbial community structure and soil metabolism, increase the abundance of FeOB in soil, promote the biotransformation process of As in soil, and enhance the resistance of soil to peroxide pollution (As pollution).
RESUMO
Microbe induced iron (Fe) reduction play an important role in arsenic (As) transformation and the related secondary mineral formation. Meanwhile biochar could react as electron shuttle for this process. Impact of biochar and model electron shuttle anthraquinone-2,6-disulfonate (AQDS) on the chemical/biological iron reduction of As(III)-adsorbed ferrihydrite and the solid-liquid redistribution of As in M1 buffer were studied. Fe reduction results in the release of As adsorbed on ferrihydrite into the solution. Under abiogenic conditions, both biochar and AQDS promoted ferrous production, the chemical oxidation of As(III) and As release. Inoculate with Shewanella oneidensis MR-1, AQDS has greater electronic shuttle function than biochar (with the maximum Fe(II) contents: 154 mg/L > 76.6 mg/L respectively). However, only 12.8 mg/L As was released in the presence of AQDS, which was much lower than that in the presence of biochar (21.6 mg/L), and may be associated with the transformation of As speciation and the formation of secondary minerals. XRD and EDX-SEM confirmed that the As could be fixed by the generated secondary mineral vivianite. The relative contents of vivianite in biological control and AQDS addition were 2.7% and 18.4%, respectively. This study provides information on the transformation and migration of As and Fe with the addition of biochar under anaerobic conditions, which is potential to understand the mechanism of As(III)-contaminated soil remediation.
Assuntos
Arsênio , Ferro , Carvão Vegetal , Compostos Férricos , OxirreduçãoRESUMO
Iron-oxidizing strain (FeOB) and iron modified biochars have been shown arsenic (As) remediation ability in the environment. However, due to the complicated soil environment, few field experiment has been conducted. The study was conducted to investigate the potential of iron modified biochar (BC-FeOS) and biomineralization by a new found FeOB to remediate As-contaminated paddy field. Compared with the control, the As contents of GB (BC-FeOS), GF (FeOB), GFN (FeOB and nitrogen fertilizer), GBF (BC-FeOS and FeOB) and GBFN (BC-FeOS, FeOB and nitrogen fertilizer) treatments in pore water decreased by 36.53%-80.03% and the microbial richness of iron-oxidizing bacteria in these treatments increased in soils at the rice maturation stage. The concentrations of available As of GB, GF, GFN, GBF and GBFN at the tillering stage were significantly decreased by 10.78%-55.48%. The concentrations of nonspecifically absorbed and specifically absorbed As fractions of GB, GF, GFN, GBF and GBFN in soils were decreased and the amorphous and poorly crystalline hydrated Fe and Al oxide-bound fraction was increased. Moreover, the As contents of GB, GF, GFN, GBF and GBFN in rice grains were significantly decreased (*P < 0.05) and the total As contents of GFN, GBF and GBFN were lower than the standard limit of the National Standard for Food Safety (GB 2762-2017). Compared with the other treatments, GBFN showed the greatest potential for the effective remediation of As-contaminated paddy fields.
Assuntos
Arsênio , Ochrobactrum , Oryza , Poluentes do Solo , Arsênio/análise , Carvão Vegetal , Ferro/análise , Oxirredução , Solo , Poluentes do Solo/análiseRESUMO
The microbe-driven iron cycle plays an important role in speciation transformation and migration of arsenic (As) in soil-rice systems. In this study, pot experiments were used to investigate the effect of bacterial iron (Fe) reduction processes in soils on As speciation and migration, as well as on As uptake in soil-rice system. During the rice growth period, pH and electrical conductivity (EC) in soil solutions initially increased and then decreased, with the ranges of 7.4-8.8 and 116.3-820 mS cm-1, respectively. The concentrations of Fe, total As and As(III) showed an increasing trend in the rhizosphere and non-rhizosphere soil solutions with the increasing time. Fe concentrations were significantly positively correlated with total As and As(III) concentrations (***p < 0.001) in the soil solutions. The abundances of the arsenate reductase gene (arsC) and the As(III) S-adenosylmethionine methyltransferase gene (arsM) in rhizosphere soils were higher than those in non-rhizosphere soils, while the abundance of the Fe-reducing bacteria (Geo) showed an opposite trend. Moreover, it showed that the Geo abundance was significantly positively correlated with that of the arsC (***p < 0.001) and arsM (**p < 0.01) genes, respectively. The abundances of Geo, arsC and arsM genes were significantly positively correlated with the concentrations of Fe, total As and As(III) in the soil solutions (*p < 0.05). Moreover, the abundances of arsC and arsM genes were significantly negatively correlated with total As and As(III) in rice grains (*P < 0.05). These results showed that the interaction of bacterial Fe reduction process and radial oxygen loss from roots promoted the reduction and methylation of As, and then decreased As uptake by rice, which provided a theoretical basis for alleviating As pollution in paddy soils.
Assuntos
Arsênio , Oryza , Poluentes do Solo , Ferro , Raízes de Plantas , SoloRESUMO
Cadmium (Cd) contamination in paddy soils has aroused global concern. Sulfur modified biochar (BC) could combine the benefits of BC and S for Cd remediation. However, no information is available on the impact of sulfur modified biochar on Cd phytoavailability in paddy soils. In this study, a pot experiment was conducted to investigate the effect of sulfur modified biochar (S-BC) and sulfur and iron (Fe) modified biochar (S-Fe BC) on Cd mobility and Cd transfer in the soil-rice system. The application of S-BC and S-Fe BC effectively reduced pore water Cd in the rhizosphere and non-rhizosphere pore water throughout the rice growth stages. S-BC and S-Fe BC addition increased the total chlorophyll content, as well as the root, shoot and grain biomasses of rice. Furthermore, S-BC and S-Fe BC amendments greatly increase the formation of Fe plaque on rice root surface, thus decreasing Cd accumulation in different rice tissues. In particular, S-Fe BC supplementation significantly reduced the Cd concentration in rice grains to 0.018â¯mgâ¯kg-1 in Cd-contaminated soil, which was lower than the China National standard for food contamination limit (0.2â¯mgâ¯kg-1 Cd). Sequential extraction results showed that S-BC and S-Fe BC can promote the transfer of exchangeable Cd to Fe-Mn oxide, organic and residual bound forms which reduce Cd in paddy soils. Thus, the amendment of S-Fe BC to Cd-contaminated paddy soil is an effective strategy to decrease Cd accumulation in rice grains and thereby protect public health.
Assuntos
Cádmio/análise , Carvão Vegetal/química , Ferro , Oryza/metabolismo , Solo/química , Enxofre , Biomassa , China , Grão Comestível/metabolismo , Poluentes do Solo/análiseRESUMO
Cadmium contamination in paddy soils has aroused increasing concern around the world, and biochar has many positive properties, such as large specific surface areas, micro porous structure for the heavy metal immobilization in soils. However there are few studies on sulfur-iron modified biochar as well as its microbiology effects. The purpose of this study was to evaluate the Cd immobilization effects of sulfur or sulfur-iron modified biochar and its related microbial community changes in Cd-contaminated soils. SEM-EDX analysis confirmed that sulfur and iron were loaded on the raw biochar successfully. Sulfur-modified biochar (S-BC) and sulfur-iron modified biochar (SF-BC) addition increased pH value and the content of soil organic matter, and also decreased DTPA-extractable Cd. There was a negative significant correlation between organic matter content and the available Cd (Pâ¯<â¯0.05). During a 45-d incubation period, the fractions of Cd are mainly with the exchangeable (25.16-35.79%) and carbonate (22.01-25.10%) fractions. Compared with the control, the concentrations of exchangeable Cd in soil were significantly (Pâ¯<â¯0.05) decreased by 12.54%, 29.71%, 18.53% under the treatments of BC, S-BC, SF-BC respectively. The S-BC and SF-BC treatments significantly (Pâ¯<â¯0.05) increased Chao1, observed, Shannon and Simpson diversity indices compared with the control and biochar treatments. Meanwhile, the relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria increased, whereas the abundance of Acidobacteria and Germmatimonadetes decreased. Capsule: Sulfur-modified and sulfur-iron modified biochar applications decreased the available Cd and changed the microbial community.
Assuntos
Cádmio/química , Carvão Vegetal/química , Microbiologia do Solo , Poluentes do Solo/química , Solo/química , Cádmio/análise , Ferro/química , Poluentes do Solo/análise , Enxofre/químicaRESUMO
Arsenic contamination in paddy soils has aroused global concern due to its threats to food security and human health. Biochar modified with different iron materials was prepared for arsenic (As) immobilization in contaminated soils. Soil incubation experiments were carried to investigate the effects of biochar modified with Fe-oxyhydroxy sulfate (Biochar-FeOS), FeCl3 (Biochar-FeCl3), and zero-valent iron (Biochar-Fe) on the pH, NaHCO3-extractable As concentrations, and the As fractions in soils. The scanning electron microscope and X-ray diffraction analysis demonstrated that iron was successfully loaded onto the surface or embedded into the pores of the biochar. Addition of Biochar-FeOS, Biochar-FeCl3, and Biochar-Fe had no significant effects on the soil pH but significantly decreased the contents of NaHCO3-extractable As in soils by 13.95-30.35%, 10.97-28.39%, and 17.98-35.18%, respectively. Biochar-FeOS, Biochar-FeCl3, and Biochar-Fe treatments decreased the concentrations of non-specifically sorbed and specifically sorbed As fractions in soils, and increased the amorphous and poorly crystalline, hydrated Fe, Al oxide-bound, and residual As fractions. Compared with the other iron-modified biochars, Biochar-FeOS showed the most effective immobilization and has the potential for the remediation of As-contaminated paddy soils.