Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068962

RESUMO

During glycolysis, the muscle isoform of pyruvate kinase PKM2 produces ATP in exchange for dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate. PKM2 has been considered as a tumor-promoting factor in most cancers, whereas the regulatory role of PKM2 during head and neck carcinogenesis remained to be delineated. PKM2 mRNA and protein expression was examined in head and neck tumorous specimens. The role of PKM2 in controlling cellular malignancy was determined in shRNA-mediated PKM2-deficient head and neck squamous cell carcinoma (HNSC) cells. In agreement with the results in other cancers, PKM2 expression is enriched in both mouse and human HNSC tissues. Nevertheless, PKM2 mRNA expression reversely correlated with tumor stage, and greater recurrence-free survival rates are evident in the PKM2high HNSC population, arguing that PKM2 may be tumor-suppressive. Multifaceted analyses showed a greater in vivo xenografic tumor growth and an enhanced cisplatin resistance in response to PKM2 loss, whereas PKM2 silencing led to reduced cell motility. At the molecular level, metabolic shifts towards mitochondrial metabolism and activation of oncogenic Protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK) signals were detected in PKM2-silencing HNSC cells. In sum, our findings demonstrated that PKM2 differentially modulated head and neck tumorigenicity via metabolic reprogramming.


Assuntos
Neoplasias de Cabeça e Pescoço , Piruvato Quinase , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Cisplatino , Glicólise/genética , Neoplasias de Cabeça e Pescoço/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068984

RESUMO

Despite recent advancements, therapies against advanced oral squamous cell carcinoma (OSCC) remain ineffective, resulting in unsatisfactory therapeutic outcomes. Cold atmospheric plasma (CAP) offers a promising approach in the treatment of malignant neoplasms. Although the effects of CAP in abrogating OSCC have been explored, the exact mechanisms driving CAP-induced cancer cell death and the changes in microRNA (miRNA) expression are not fully understood. We fabricated and calibrated an argon-CAP device to explore the effects of CAP irradiation on the growth and expression of oncogenic miRNAs in OSCC. The analysis revealed that, in OSCC cell lines following CAP irradiation, there was a significant reduction in viability; a downregulation of miR-21, miR-31, miR-134, miR-146a, and miR-211 expression; and an inactivation of the v-akt murine thymoma viral oncogene homolog (AKT) and extracellular signal-regulated kinase (ERK) signals. Pretreatment with blockers of apoptosis, autophagy, and ferroptosis synergistically reduced CAP-induced cell death, indicating a combined induction of variable death pathways via CAP. Combined treatments using death inhibitors and miRNA mimics, alongside the activation of AKT and ERK following the exogenous expression, counteracted the cell mortality associated with CAP. The CAP-induced downregulation of miR-21, miR-31, miR-187, and miR-211 expression was rescued through survival signaling. Additionally, CAP irradiation notably inhibited the growth of SAS OSCC cell xenografts on nude mice. The reduced expression of oncogenic miRNAs in vivo aligned with in vitro findings. In conclusion, our study provides new lines of evidence demonstrating that CAP irradiation diminishes OSCC cell viability by abrogating survival signals and oncogenic miRNA expression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446052

RESUMO

Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Inflamassomos/metabolismo , Sinais (Psicologia) , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pneumonia/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36993818

RESUMO

Robust experiment evidence suggests that prolactin can enhance beta-cell proliferation and increase insulin secretion and sensitivity. Apart from acting as an endocrine hormone, it also function as an adipokine and act on adipocytes to modulate adipogenesis, lipid metabolism and inflammation. Several cross-sectional epidemiologic studies consistently showed that circulating prolactin levels positive correlated with increased insulin sensitivity, lower glucose and lipid levels, and lower prevalence of T2D and metabolic syndrome. Bromocriptine, a dopamine receptor agonist used to treat prolactinoma, is approved by Food and Drug Administration for treatment in type 2 diabetes mellitus since 2009. Prolactin lowering suppress insulin secretion and decrease insulin sensitivity, therefore dopamine receptor agonists which act at the pituitary to lower serum prolactin levels are expected to impair glucose tolerance. Making it more complicating, studies exploring the glucose-lowering mechanism of bromocriptine and cabergoline have resulted in contradictory results; while some demonstrated actions independently on prolactin status, others showed glucose lowering partly explained by prolactin level. Previous studies showed that a moderate increase in central intraventricular prolactin levels stimulates hypothalamic dopamine with a decreased serum prolactin level and improved glucose metabolism. Additionally, sharp wave-ripples from the hippocampus modulates peripheral glucose level within 10 minutes, providing evidence for a mechanistic link between hypothalamus and blood glucose control. Central insulin in the mesolimbic system have been shown to suppress dopamine levels thus comprising a feedback control loop. Central dopamine and prolactin levels plays a key role in the glucose homeostasis control, and their dysregulation could lead to the pathognomonic central insulin resistance depicted in the "ominous octet". This review aims to provide an in-depth discussion on the glucose-lowering mechanism of dopamine receptor agonists and on the diverse prolactin and dopamine actions on metabolism targets.

5.
Cell Death Dis ; 12(11): 961, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663785

RESUMO

Mitochondrial transcriptional factor A (TFAM) acts as a key regulatory to control mitochondrial DNA (mtDNA); the impact of TFAM and mtDNA in modulating carcinogenesis is controversial. Current study aims to define TFAM mediated regulations in head and neck cancer (HNC). Multifaceted analyses in HNC cells genetically manipulated for TFAM were performed. Clinical associations of TFAM and mtDNA encoded Electron Transport Chain (ETC) genes in regulating HNC tumourigenesis were also examined in HNC specimens. At cellular level, TFAM silencing led to an enhanced cell growth, motility and chemoresistance whereas enforced TFAM expression significantly reversed these phenotypic changes. These TFAM mediated cellular changes resulted from (1) metabolic reprogramming by directing metabolism towards aerobic glycolysis, based on the detection of less respiratory capacity in accompany with greater lactate production; and/or (2) enhanced ERK1/2-Akt-mTORC-S6 signalling activity in response to TFAM induced mtDNA perturbance. Clinical impacts of TFAM and mtDNA were further defined in carcinogen-induced mouse tongue cancer and clinical human HNC tissues; as the results showed that TFAM and mtDNA expression were significantly dropped in tumour compared with their normal counterparts and negatively correlated with disease progression. Collectively, our data uncovered a tumour-suppressing role of TFAM and mtDNA in determining HNC oncogenicity and potentially paved the way for development of TFAM/mtDNA based scheme for HNC diagnosis.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Mitocondrial , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Mitocondriais/metabolismo , Oncogenes , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , DNA Mitocondrial/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glucose/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirúvico/metabolismo , Efeito Warburg em Oncologia
6.
Diagnostics (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34359370

RESUMO

Oral cancer is one of the most common head and neck malignancies and has an overall 5-year survival rate that remains below 50%. Oral cancer is generally preceded by oral potentially malignant disorders (OPMDs) but determining the risk of OPMD progressing to cancer remains a difficult task. Several diagnostic technologies have been developed to facilitate the detection of OPMD and oral cancer, and some of these have been translated into regulatory-approved in vitro diagnostic systems or medical devices. Furthermore, the rapid development of novel biomarkers, electronic systems, and artificial intelligence may help to develop a new era where OPMD and oral cancer are detected at an early stage. To date, a visual oral examination remains the routine first-line method of identifying oral lesions; however, this method has certain limitations and as a result, patients are either diagnosed when their cancer reaches a severe stage or a high-risk patient with OPMD is misdiagnosed and left untreated. The purpose of this article is to review the currently available diagnostic methods for oral cancer as well as possible future applications of novel promising technologies to oral cancer diagnosis. This will potentially increase diagnostic options and improve our ability to effectively diagnose and treat oral cancerous-related lesions.

7.
Front Cell Dev Biol ; 9: 643043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414175

RESUMO

Recent research has focused on the mechanisms by which long non-coding RNAs (lncRNAs) modulate diverse cellular processes such as tumorigenesis. However, the functional characteristics of these non-coding elements in the genome are poorly understood at present. In this study, we have explored several mechanisms that involve the novel lncRNA and microRNA (miRNA) axis participating in modulation of drug response and the tumor microenvironment of myeloproliferative neoplasms (MPNs). We identified novel lncRNAs via mRNA sequencing that was applied to leukemic cell lines derived from BCR-ABL1-positive and JAK2-mutant MPNs under treatment with therapeutic tyrosine kinase inhibitors (TKI). The expression and sequence of novel LNC000093 were further validated in both leukemic cells and normal primary and pluripotent cells isolated from human blood, including samples from patients with chronic myelogenous leukemia (CML). Downregulation of LNC000093 was validated in TKI-resistant CML while a converse expression pattern was observed in blood cells isolated from TKI-sensitive CML cases. In addition to BCR-ABL1-positive CML cells, the driver mutation JAK2-V617F-regulated lncRNA BANCR axis was further identified in BCR-ABL1-negative MPNs. Further genome-wide validation using MPN patient specimens identified 23 unique copy number variants including the 7 differentially expressed lncRNAs from our database. The newly identified LNC000093 served as a competitive endogenous RNA for miR-675-5p and reversed the imatinib resistance in CML cells through regulating RUNX1 expression. The extrinsic function of LNC000093 in exosomal H19/miR-675-induced modulation for the microenvironment was also determined with significant effect on VEGF expression.

8.
Polymers (Basel) ; 13(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920427

RESUMO

Neonatal pancreatic cell clusters (NPCCs) are potential tissues for the treatment of diabetes. Different from adult cells, they continuously proliferate and differentiate after transplantation. In this study, we utilized magnetic resonance imaging (MRI) to detect and monitor implanted NPCCs. NPCCs were isolated from one-day-old neonatal pigs, cultured for three days, and then incubated overnight with the contrast agent chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. In vitro, Prussian blue staining and MR scans of CSPIO-labeled NPCCs were performed. In vivo, we transplanted 2000 CSPIO-labeled NPCCs under the kidney capsule of nondiabetic nude mice. Recipients were scanned with 7.0T MRI. Grafts were removed for histology with insulin and Prussian blue staining. After being incubated overnight with CSPIO, NPCCs showed positive iron staining and appeared as dark spots on MR scans. After transplantation of CSPIO-labeled NPCCs, persistent hypointense areas were observed at recipients' implant sites for up to 54 days. Moreover, histology showed colocalization of the insulin and iron staining in 15-, 51- and 55-day NPCC grafts. Our results indicate that transplanted NPCCs survived and differentiated to ß cells after transplantation, and that MRI is a useful tool for the detection and monitoring of CSPIO-labeled NPCC grafts.

9.
Biomolecules ; 10(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957726

RESUMO

Oral cancer (OC) is a serious health problem. Surgery is the best method to treat the disease but might reduce the quality of life of patients. Photodynamic therapy (PDT) may enhance quality of life but with some limitations. Therefore, the development of a new strategy to facilitate PDT effectiveness has become crucial. ATP-binding cassette G2 (ABCG2) is a membrane protein-associated drug resistance and stemness in cancers. Here, we examined whether ABCG2 plays an important role in regulating the treatment efficacy of PDT and whether ABCG2 inhibition by natural compounds can promote the effect of PDT in OC cells. Several head and neck cancer cells were utilized in this study. OECM1 and SAS cells were selected to investigate the relationship between ABCG2 expression and protoporphyrin IX (PpIX) accumulation. Western blot analysis, flow cytometry analysis, and survival probability were performed to determine PDT efficacy and cellular stemness upon treatment of different dietary compounds, including epigallocatechin gallate (EGCG) and curcumin. In this study, we found that ABCG2 expression varied in OC cells. Hypoglycemic culture for SAS cells enhanced ABCG2 expression as higher ABCG2 expression was associated with lower PpIX accumulation and cellular stemness in OC cells. In contrast, suppression of ABCG2 expression by curcumin and tea polyphenol EGCG led to greater PpIX accumulation and enhanced PDT treatment efficiency in OC cells. In conclusion, ABCG2 plays an important role in regulating the effect of PDT. Change in glucose concentration and treatment with natural compounds modulated ABCG2 expression, resulting in altered PDT efficacy for OC cells. These modulations raise a potential new treatment strategy for early-stage OCs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Catequina/análogos & derivados , Curcumina/farmacologia , Gefitinibe/farmacologia , Neoplasias Bucais/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
10.
Biomolecules ; 10(9)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942674

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. It is well recognized that environmental challenges such as smoking, viral infection and alcohol consumption are key factors underlying HNSCC pathogenesis. Other than major clinical interventions (e.g., surgical resection, chemical and radiotherapy) that have been routinely practiced over years, adjuvant anticancer agents from Traditional Herbal Medicine (THM) are proposed, either alone or together with conventional therapies, to be experimentally effective for improving treatment efficacy in different cancers including HNSCCs. At a cellular and molecular basis, THM extracts could modulate different malignant indices via distinct signaling pathways and provide better control in HNSCC malignancy and its clinical complications such as radiotherapy-induced xerostomia/oral mucositis. In this article, we aim to systemically review the impacts of THM in regulating HNSCC tumorous identities and its potential perspective for clinical use.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Proteínas de Neoplasias/genética , Neovascularização Patológica/prevenção & controle , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Raios gama/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metástase Linfática , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Plantas Medicinais/química , Estomatite/etiologia , Estomatite/genética , Estomatite/metabolismo , Estomatite/patologia , Taiwan , Xerostomia/etiologia , Xerostomia/genética , Xerostomia/metabolismo , Xerostomia/patologia
12.
Front Oncol ; 10: 176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195170

RESUMO

To support great demand of cell growth, cancer cells preferentially obtain energy and biomacromolecules by glycolysis over mitochondrial oxidative phosphorylation (OxPhos). Among all glycolytic enzymes, hexokinase (HK), a rate-limiting enzyme at the first step of glycolysis to catalyze cellular glucose into glucose-6-phosphate, is herein emphasized. Four HK isoforms, HK1-HK4, were discovered in nature. It was shown that HK2 expression is enriched in many tumor cells and correlated with poorer survival rates in most neoplastic cells. HK2-mediated regulations for cell malignancy and mechanistic cues in regulating head and neck tumorigenesis, however, are not fully elucidated. Cellular malignancy index, such as cell growth, cellular motility, and treatment sensitivity, and molecular alterations were determined in HK2-deficient head and neck squamous cell carcinoma (HNSCC) cells. By using various cancer databases, HK2, but not HK1, positively correlates with HNSCC progression in a stage-dependent manner. A high HK2 expression was detected in head and neck cancerous tissues compared with their normal counterparts, both in mouse and human subjects. Loss of HK2 in HNSCC cells resulted in reduced cell (in vitro) and tumor (in vivo) growth, as well as decreased epithelial-mesenchymal transition-mediated cell movement; in contrast, HK2-deficient HNSCC cells exhibited greater sensitivity to chemotherapeutic drugs cisplatin and 5-fluorouracil but are more resistant to photodynamic therapy, indicating that HK2 expression could selectively define treatment sensitivity in HNSCC cells. At the molecular level, it was found that HK2 alteration drove metabolic reprogramming toward OxPhos and modulated oncogenic Akt and mutant TP53-mediated signals in HNSCC cells. In summary, the present study showed that HK2 suppression could lessen HNSCC oncogenicity and modulate therapeutic sensitivity, thereby being an ideal therapeutic target for HNSCCs.

13.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31723026

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining cancer with abnormal angiogenesis. The high incidence of KS in human immunodeficiency virus (HIV)-infected AIDS patients has been ascribed to an interaction between HIV type 1 (HIV-1) and KSHV, focusing on secretory proteins. The HIV-1 secreted protein HIV Tat has been found to synergize with KSHV lytic proteins to induce angiogenesis. However, the impact and underlying mechanisms of HIV Tat in KSHV-infected endothelial cells undergoing viral lytic reactivation remain unclear. Here, we identified LINC00313 as a novel KSHV reactivation-activated long noncoding RNA (lncRNA) that interacts with HIV Tat. We found that LINC00313 overexpression inhibits cell migration, invasion, and tube formation, and this suppressive effect was relieved by HIV Tat. In addition, LINC00313 bound to polycomb repressive complex 2 (PRC2) complex components, and this interaction was disrupted by HIV Tat, suggesting that LINC00313 may mediate transcription repression through recruitment of PRC2 and that HIV Tat alleviates repression through disruption of this association. This notion was further supported by bioinformatics analysis of transcriptome profiles in LINC00313 overexpression combined with HIV Tat treatment. Ingenuity Pathway Analysis (IPA) showed that LINC00313 overexpression negatively regulates cell movement and migration pathways, and enrichment of these pathways was absent in the presence of HIV Tat. Collectively, our results illustrate that an angiogenic repressive lncRNA, LINC00313, which is upregulated during KSHV reactivation, interacts with HIV Tat to promote endothelial cell motility. These results demonstrate that an lncRNA serves as a novel connector in HIV-KSHV interactions.IMPORTANCE KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection.


Assuntos
HIV-1/fisiologia , Herpesvirus Humano 8/fisiologia , RNA Longo não Codificante/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Coinfecção , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Infecções por HIV/virologia , Humanos , Complexo Repressor Polycomb 2 , Sarcoma de Kaposi/virologia , Ativação Transcricional , Regulação para Cima , Ativação Viral/genética , Replicação Viral
14.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416244

RESUMO

Considering the great energy and biomass demand for cell survival, cancer cells exhibit unique metabolic signatures compared to normal cells. Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. Recent findings have shown that environmental challenges, as well as intrinsic metabolic manipulations, could modulate HNSCC experimentally and serve as clinic prognostic indicators, suggesting that a better understanding of dynamic metabolic changes during HNSCC development could be of great benefit for developing adjuvant anti-cancer schemes other than conventional therapies. However, the following questions are still poorly understood: (i) how does metabolic reprogramming occur during HNSCC development? (ii) how does the tumorous milieu contribute to HNSCC tumourigenesis? and (iii) at the molecular level, how do various metabolic cues interact with each other to control the oncogenicity and therapeutic sensitivity of HNSCC? In this review article, the regulatory roles of different metabolic pathways in HNSCC and its microenvironment in controlling the malignancy are therefore discussed in the hope of providing a systemic overview regarding what we knew and how cancer metabolism could be translated for the development of anti-cancer therapeutic reagents.


Assuntos
Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Suscetibilidade a Doenças , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Terapia de Alvo Molecular
15.
Neoplasia ; 21(7): 641-652, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100640

RESUMO

Even with increasing evidence for roles of glycolytic enzymes in controlling cancerous characteristics, the best target of candidate metabolic enzymes for lessening malignancy remains under debate. Pyruvate is a main glycolytic metabolite that could be mainly converted into either lactate by Lactate Dehydrogenase A (LDHA) or acetyl-CoA by Pyruvate Dehydrogenase E1 component α subunit (PDHA1) catalytic complex. In tumor cells, accumulating lactate is produced whereas the conversion of pyruvate into mitochondrial acetyl-CoA is less active compared with their normal counterparts. This reciprocal molecular association makes pyruvate metabolism a potential choice of anti-cancer target. Cellular and molecular changes were herein assayed in Head and Neck Squamous Cell Carcinoma (HNSCC) cells in response to LDHA and PDHA1 loss in vitro, in vivo and in clinic. By using various human cancer databases and clinical samples, LDHA and PDHA1 levels exhibit reversed prognostic roles. In vitro analysis demonstrated that decreased cell growth and motility accompanied by an increased sensitivity to chemotherapeutic agents was found in cells with LDHA loss whereas PDHA1-silencing exhibited opposite phenotypes. At the molecular level, it was found that oncogenic Protein kinase B (PKB/Akt) and Extracellular signal-regulated kinase (ERK) singling pathways contribute to pyruvate metabolism mediated HNSCC cell growth. Furthermore, LDHA/PDHA1 changes in HNSCC cells resulted in a broad metabolic reprogramming while intracellular molecules including polyunsaturated fatty acids and nitrogen metabolism related metabolites underlie the malignant changes. Collectively, our findings reveal the significance of pyruvate metabolic fates in modulating HNSCC tumorigenesis and highlight the impact of metabolic plasticity in HNSCC cells.


Assuntos
Carcinogênese/genética , L-Lactato Desidrogenase/genética , Piruvato Desidrogenase (Lipoamida)/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicólise/genética , Xenoenxertos , Humanos , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/genética , Ácido Pirúvico/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
16.
Clin Oral Investig ; 23(10): 3871-3878, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30729345

RESUMO

OBJECTIVES: Magnetic resonance imaging (MRI) is a standardized method for assisting joint diagnosis. To validate the reliability of different imaging-based grading systems, this study examined (1) the associations between grading systems for osseous change, joint effusion, and the Wilkes classification of temporomandibular joint (TMJ) disorders and (2) the correlation between cytokines in synovial fluid and imaging-based joint scores. MATERIALS AND METHODS: Twenty-seven patients, who routinely received numeric rating scale (NRS) and MRI assessment before TMJ arthrocentesis, were enrolled. Each joint was evaluated through the grading criteria for severity of osseous change and joint effusion by blinded observers using MRI. ImageJ was employed for classifying joint effusion. Joint synovial fluid, collected through arthrocentesis, was examined for cytokine expression by using a Luminex multiplex assay. All data were analyzed using the Pearson correlation analysis. RESULTS: The Wilkes classification was strongly correlated with osseous change scores, but not with joint effusion scores. Joint effusion scores significantly correlated with NRS scores, but not with the Wilkes classification and osseous change scores. Compared with osseous change scores, joint effusion scores had a higher correlation with the levels of inflammatory cytokines (interleukin (IL)-8 and soluble IL-6 receptor (sIL-6R)) and with anti-inflammatory cytokines (soluble tumor necrosis factor receptors I and II (sTNF-RI/II)). CONCLUSIONS: In patients with TMJ disorders, MRI grades are strongly correlated with NRS scores and levels of cytokines (IL-8, sIL-6R, and sTNF-RI/II) in the synovial fluid. CLINICAL RELEVANCE: Joint effusion scoring can be a reliable and valid indicator for pathological assessment of TMJ disorders.


Assuntos
Citocinas/análise , Líquido Sinovial/química , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/imunologia , Adulto Jovem
17.
Stem Cell Reports ; 10(3): 725-738, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29478894

RESUMO

Pancreatic duct epithelial cells have been suggested as a source of progenitors for pancreatic growth and regeneration. However, genetic lineage-tracing experiments with pancreatic duct-specific Cre expression have given conflicting results. Using immunofluorescence and flow cytometry, we show heterogeneous expression of both HNF1ß and SOX9 in adult human and murine ductal epithelium. Their expression was dynamic and diminished significantly after induced replication. Purified pancreatic duct cells formed organoid structures in 3D culture, and heterogeneity of expression of Hnf1ß and Sox9 was maintained even after passaging. Using antibodies against a second cell surface molecule CD51 (human) or CD24 (mouse), we could isolate living subpopulations of duct cells enriched for high or low expression of HNF1ß and SOX9. Only the CD24high (Hnfßhigh/Sox9high) subpopulation was able to form organoids.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Ductos Pancreáticos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adulto , Idoso , Animais , Antígeno CD24/metabolismo , Células Epiteliais/metabolismo , Humanos , Integrina alfaV/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Organoides/metabolismo
18.
J Gastroenterol Hepatol ; 32(1): 261-269, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27218433

RESUMO

BACKGROUND AND AIM: In view of its unique properties of detoxification and involvement of metabolic and biochemical functions, in vitro hepatocyte culture serves as a valuable material for drug screening and mechanistic analysis for pathology of liver diseases. The restriction of rapid de-differentiation and inaccessibility of human hepatocytes from routine clinical procedure, however, limits its use. METHODS: To address this issue, the effort to direct human mesenchymal stem cells (hMSCs) into hepatocytes using a modified protocol was proposed. With the additional treatment of histone deacetylase inhibitor (HDACi) and DNA methyltransferase inhibitor (DNMTi), in vitro hMSC-derived hepatocytes were cultivated and their hepatic characteristics were examined. RESULTS: By using a modified protocol, it was shown that Trichostatin A and 5-aza-2-deoxycitidine protected differentiating cells from death and could sufficiently trigger a wide range of liver-specific markers as well as liver functions including albumin production, glycogen storage, and urea cycle in hMSC-derived hepatocytes. The increased mRNA expression for hepatitis C virus (HCV) entry including CD81, Occludin, LDL receptor, and scavenger receptor class B type I in hMSC-derived hepatocytes was also detected, implying its potential to be utilized as an in vitro model to analyze dynamic HCV infection. CONCLUSIONS: The present study successfully established a protocol to direct hMSCs into hepatocyte-like cells suggesting the beneficial impact to apply HDACi and DNMTi as potent modulators for hMSCs to liver differentiation.


Assuntos
Diferenciação Celular , DNA (Citosina-5-)-Metiltransferases , Inibidores Enzimáticos , Epigênese Genética , Hepatócitos , Inibidores de Histona Desacetilases , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos
19.
Oncotarget ; 7(16): 22948-59, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27027345

RESUMO

Curative surgical resection (CSR) remains the most effective therapeutic intervention for patients with hepatocellular carcinoma (HCC); however, frequent post-surgical recurrence leads to high cancer related mortality. This study aimed to clarify the role of body mass index (BMI) and serum cholesterol level in predicting post-surgical outcomes in HCC patients after CSR. A total of 484 HCC patients including 213 BMIhigh and 271 BMIlow patients were included. Overall survival (OS) and recurrence-free survival (RFS) rates were examined in patients with differential BMI and serum cholesterol level. The analysis showed that significant different 1-, 3- and 5-year cumulative OS rates (P-value=0.015) and RFS rate (P-value=0.010) between BMIlow and BMIhigh patients. Further analysis in groups with differential serum cholesterol levels among BMIlow and BMIhigh patients indicated that the BMIlow/Chollow patients exhibited the significant lower cumulative OS and RFS rates in comparison with the remaining subjects (P-value=0.007 and 0.039 for OS and RFS rates, respectively). In conclusion, the coexistence of low BMI and low serum cholesterol level could serve as prognostic factors to predict post-operative outcomes in HCC patients undergoing surgical hepatectomy.


Assuntos
Índice de Massa Corporal , Carcinoma Hepatocelular/patologia , Colesterol/sangue , Neoplasias Hepáticas/patologia , Obesidade/complicações , Adulto , Idoso , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/mortalidade , Estudos de Coortes , Feminino , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Taiwan , Resultado do Tratamento
20.
Oncotarget ; 6(30): 29268-84, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26337468

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. While numerous potent dietary insults were considered as oncogenic players for HNSCC development, the impact of metabolic imbalance was less emphasized during HNSCC carcinogenesis. Previous preclinical and epidemiological investigations showed that DM could possibly be correlated with greater incidence and poorer prognosis in HNSCC patients; however, the outcomes from different groups are contradictive and underlying mechanisms remains elusive. In the present study, the changes of cellular malignancy in response to prolonged glucose incubation in HNSCC cells were examined. The results demonstrated that hyperglycemia enhanced HNSCC cell malignancy over time through suppression of cell differentiation, promotion of cell motility, increased resistance to cisplatin, and up-regulation of the nutrient-sensing Akt/AMPK-mTORC1 pathway. Further analysis showed that a more aggressive tongue neoplastic progression was found under DM conditions compared to non-DM state whereas DM pathology led to a higher percentage of cervical lymph node metastasis and poorer prognosis in HNSCC patients. Taken together, the present study confirms that hyperglycemia and DM could enhance HNSCC malignancy and the outcomes are of great benefit in providing better anti-cancer treatment strategy for DM patients with HNSCC.


Assuntos
Carcinoma de Células Escamosas/etiologia , Transformação Celular Neoplásica , Complicações do Diabetes/etiologia , Glucose/metabolismo , Neoplasias de Cabeça e Pescoço/etiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cisplatino/farmacologia , Citoesqueleto/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Modelos de Riscos Proporcionais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Estudos Retrospectivos , Fatores de Risco , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA