Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(15): e2307063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342624

RESUMO

The high incidence of restenosis after angioplasty has been the leading reason for the recurrence of coronary heart disease, substantially increasing the mortality risk for patients. However, current anti-stenosis drug-eluting stents face challenges due to their limited functions and long-term safety concerns, significantly compromising their therapeutic effect. Herein, a stent-free anti-stenosis drug coating (denoted as Cur-NO-Gel) based on a peptide hydrogel is proposed. This hydrogel is formed by assembling a nitric oxide (NO) donor-peptide conjugate as a hydrogelator and encapsulating curcumin (Cur) during the assembly process. Cur-NO-Gel has the capability to release NO upon ß-galactosidase stimulation and gradually release Cur through hydrogel hydrolysis. The in vitro experiments confirmed that Cur-NO-Gel protects vascular endothelial cells against oxidative stress injury, inhibits cellular activation of vascular smooth muscle cells, and suppresses adventitial fibroblasts. Moreover, periadventitial administration of Cur-NO-Gel in the angioplasty model demonstrate its ability to inhibit vascular stenosis by promoting reendothelialization, suppressing neointima hyperplasia, and preventing constrictive remodeling. Therefore, the study provides proof of concept for designing a new generation of clinical drugs in angioplasty.


Assuntos
Curcumina , Hidrogéis , Humanos , Constrição Patológica , Células Endoteliais , Angioplastia , Curcumina/farmacologia , Curcumina/uso terapêutico , Peptídeos
2.
Acta Biomater ; 169: 372-386, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597679

RESUMO

Recent studies have demonstrated the critical role of cardiac-resident macrophages (cMacs) in the maintenance of physiological homeostasis. However, recruitment of circulating monocyte-derived macrophages decreases cMac levels post-myocardial infarction (MI). Transplanting cMacs is not an ideal option due to their low survival rates and the risk of immunological rejection. However, extracellular vesicle therapy has the potential to provide a feasible and safe alternative for cardiac repair. In this study, cell membrane-modified extracellular vesicles (MmEVs) were developed for heart repair by modifying cMac-derived extracellular vesicles (mEVs) with monocyte membranes, resulting in immune evasion and sequential targeted localization to damaged regions through expression of CD47 on MmEVs and strong affinity between monocyte membrane proteins and CCL2. Additionally, to fully exploit the potential clinical application of MmEVs and achieve a better curative effect, thymosin ß4 (Tß4) was loaded into the nanoparticles, resulting in Tß4-MmEVs. In vitro experiments indicated that both the MmEVs and Tß4-MmEVs promoted cardiomyocyte proliferation and endothelial cell migration. Animal experiments suggested that MI mice treated with MmEVs and Tß4-MmEVs exhibited reduced myocardial fibrosis and increased vascular density compared to the control group. Thus, we posit that these targeted nanoparticles hold significant potential for MI adjuvant therapy and may open new avenues for cardiac repair and regeneration. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) derived from bioactive parent cell sources involved in pathological and repair processes for cardiovascular disease have emerged as a compelling strategy for regenerative therapy. In this study, we constructed monocyte membrane-modified extracellular vesicles loaded with a drug (Tß4-MmEVs) for heart repair that exhibit extraordinary abilities of immune evasion and sequential localization to damaged regions owing to the presence of CD47 and the strong affinity between monocytes and damaged cardiomyocytes and endothelial cells. The bioactivities of Tß4-MmEVs on enhancing cardiomyocyte and endothelial cell proliferation were validated both in vitro and in vivo. Effective development and implementation of therapeutically membrane-modified nanoparticles from homologous origins can provide a reference for adjuvant therapy in clinical MI management.


Assuntos
Antígeno CD47 , Monócitos , Animais , Camundongos , Células Endoteliais , Macrófagos , Miócitos Cardíacos
3.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230496

RESUMO

BACKGROUND: To identify the risk of death from cardiovascular disease (CVD) in older patients with bladder cancer (BC). METHODS: This population-based study included 80,042 older BC patients (≥65 years) diagnosed between 1975 and 2018, with a mean follow-up of 17.2 years. The proportion of deaths, competing risk models, standardized mortality ratio (SMR), and absolute excess risk (AER) per 10,000 person-years were applied to identify the risk of CVD-related deaths among older BC patients. RESULTS: For older patients with BC, CVD-related death was the chief cause of death, and cumulative CVD-related mortality also exceeded primary BC as the leading cause of death mostly 5-10 years after BC diagnosis, especially in localized-stage and low-grade subgroups. The risk of short- and long-term CVD-related death in older BC patients was higher than in the general older adult population (SMR = 1.30, 95% CI 1.28-1.32; AER = 105.68). The risk of sex-specific CVD-related deaths also increased compared to the general population of older adults, including heart disease, cerebrovascular diseases, hypertension without heart disease, atherosclerosis, aortic aneurysm and dissection, and other diseases of the arteries, arterioles, and capillaries. CONCLUSIONS: CVD-related death is an important competing risk among older BC patients and has surpassed primary BC as the chief cause of death, mainly 5-10 years after BC diagnosis. The risk of CVD-related death in older patients with BC was greater than in the general population. The management of older patients with BC should focus not only on the primary cancer but also on CVD-related death.

4.
Bioact Mater ; 14: 416-429, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35386821

RESUMO

Currently, stem cell transplantations in cardiac repair are limited owing to disadvantages, such as immunological rejection and poor cell viability. Although direct injection of exosomes can have a curative effect similar to that of stem cell transplantation, high clearance hinders its application in clinical practice. Previous reports suggested that induction of coronary collateralization can be a desired method of adjunctive therapy for someone who had missed the optimal operation time to attenuate myocardial ischemia. In this study, to mimic the paracrine and biological activity of stem cells, we developed artificial stem cells that can continuously release Tß4-exosomes (Tß4-ASCs) by encapsulating specific exosomes within microspheres using microfluidics technology. The results show that Tß4-ASCs can greatly promote coronary collateralization in the periphery of the myocardial infarcted area, and its therapeutic effect is superior to that of directly injecting the exosomes. In addition, to better understand how it works, we demonstrated that the Tß4-ASC-derived exosomes can enhance the angiogenic capacity of coronary endothelial cells (CAECs) via the miR-17-5p/PHD3/Hif-1α pathway. In brief, as artificial stem cells, Tß4-ASCs can constantly release functional exosomes and stimulate the formation of collateral circulation after myocardial infarction, providing a feasible and alternative method for clinical revascularization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA