Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
3.
Inflammation ; 47(4): 1328-1343, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38630167

RESUMO

Innate immune response is the first line of defense for the host against virus invasion. One important response is the synthesis and secretion of type I interferon (IFN-I) in the virus-infected host cells. Here, we found that respiratory syncytial virus (RSV) infection induced high expression of TRIM25, which belongs to the tripartite motif-containing (TRIM) family of proteins. TRIM25 bound and activated retinoic acid-inducible gene I (RIG-I) by K63-linked ubiquitination. Accordingly, RIG-I mediated the production of IFN-I mainly through the nuclear factor kappa-B (NF-κB) pathway in respiratory epithelial cells. Interestingly, IFN-I, in turn, promoted a high expression of TRIM38 which downregulated the expression of IFN-I by reducing the protein level of RIG-I by K48-linked ubiquitination. More importantly, the binding site of TRIM25 to RIG-I was found in the narrow 25th-43rd amino acid (aa) region of RIG-I N-terminus. In contrast, the binding sites of TRIM38 to RIG-I were found in a much wider amino acid region, which included the binding site of TRIM25 on RIG-I. As a result, TRIM38 inhibits the production of IFN-I by competing with TRIM25 for RIG-I binding. Thus, TRIM38 negatively regulates RIG-I activation to, in turn, downregulate IFN-I expression, thus interfering with host immune response. A negative feedback loop effectively "puts the brakes" on the reaction once host immune response is overactivated and homeostasis is unbalanced. We also discovered that TRIM25 bound RIG-I by a new K63-linked ubiquitination located at K-45 of the first caspase recruitment domain (CARD). Collectively, these results confirm an antagonism between TRIM38 and TRIM25 in regulating IFN-I production by affecting RIG-I activity following RNA virus infection.


Assuntos
Proteína DEAD-box 58 , Regulação para Baixo , Interferon Tipo I , Receptores Imunológicos , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas com Motivo Tripartido/metabolismo , Proteína DEAD-box 58/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/biossíntese , Fatores de Transcrição/metabolismo , Receptores Imunológicos/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Ligação Proteica , Células A549 , Vírus Sinciciais Respiratórios/imunologia
5.
Cell Biol Int ; 48(2): 174-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853939

RESUMO

Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.


Assuntos
Alquil e Aril Transferases , Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Quinases Associadas a rho , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Vimentina/metabolismo , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Invasividade Neoplásica/genética , Pontos de Checagem do Ciclo Celular , Transdução de Sinais , Proliferação de Células , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
6.
Diabetes Metab Syndr Obes ; 16: 2255-2268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545743

RESUMO

Purpose: The identification of significant fibrosis is critical for predicting the prognosis of non-alcoholic fatty liver disease (NAFLD). This study aimed to compare the predictive value of chitinase-3-like protein 1 (CHl3L1) and other non-invasive biomarkers, as well as to establish a novel non-invasive diagnostic model for assessing the risk of significant fibrosis in NAFLD. Patients and Methods: A total of 71 patients with confirmed NAFLD based on liver biopsy were included in this study. Serum CHI3L1 levels and other non-invasive fibrosis assessment measures were determined. The aspartate aminotransferase-to-platelet ratio index (APRI) and Fibrosis-4 Index (FIB-4) were calculated to assess the diagnostic superiority of serum CHI3L1 compared to other non-invasive fibrosis assessment measures. Multivariate logistic regression analysis was conducted to identify relevant variables for constructing a diagnostic model. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of each index, including the area under ROC curve (AUC), sensitivity, and specificity. A nomogram was established based on the logistic regression model. Results: Serum CHI3LI levels were found to be higher in NAFLD patients with significant fibrosis compared to those without significant fibrosis. Multivariate logistic regression analysis revealed that aspartate aminotransferase (AST), type IV collagen (IV-C), CHI3L1, and liver stiffness measurement (LSM) were identified as potential independent risk factors associated with significant fibrosis in patients. The AUC of CHI3L1 for diagnosing significant liver fibrosis was 0.716 (0.596,0.836), with the optimal cut-off point of 125.315. The nomogram incorporating CHI3LI, AST, IV-C, and LSM further improved the potential predictive value, with an AUC for diagnosing significant fibrosis of 0.864 (0.766,0.962). This was superior to IV-C, CHI3L1, LSM, and APRI (all p < 0.05). Conclusion: The diagnostic model constructed by CHI3L1 combined with the existing non-invasive markers AST, IV-C, and LSM can help assess the risk of significant liver fibrosis in NAFLD.

7.
J Virol ; 97(3): e0176422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779760

RESUMO

Respiratory syncytial virus (RSV) infects more than 60% of infants in their first year of life. Since an experimental formalin-inactivated (FI) RSV vaccine tested in the 1960s caused enhanced respiratory disease (ERD), few attempts have been made to vaccinate infants. ERD is characterized by Th2-biased responses, lung inflammation, and poor protective immune memory. Innate immune memory displays an increased nonspecific effector function upon restimulation, a process called trained immunity, or a repressed effector function upon restimulation, a process called tolerance, which participates in host defense and inflammatory disease. Mycobacterium bovis bacillus Calmette-Guérin (BCG) given at birth can induce trained immunity as well as heterologous Th1 responses. We speculate that BCG given at birth followed by FI-RSV may alleviate ERD and enhance protection through promoting trained immunity and balanced Th immune memory. Neonatal mice were given BCG at birth and then vaccinated with FI-RSV+Al(OH)3. BCG/FI-RSV+Al(OH)3 induced trained macrophages, tissue-resident memory T cells (TRM), and specific cytotoxic T lymphocytes (CTL) in lungs and inhibited Th2 and Th17 cell immune memory, all of which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented the innate tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. Therefore, BCG given at birth to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants. IMPORTANCE RSV is the leading cause of severe lower respiratory tract infection of infants. ERD, characterized by Th2-biased responses, inflammation, and poor immune memory, has been an obstacle to the development of safe and effective killed RSV vaccines. Innate immune memory participates in host defense and inflammatory disease. BCG given at birth can induce trained immunity as well as heterologous Th1 responses. Our results showed that BCG/FI-RSV+Al(OH)3 induced trained macrophages, TRM, specific CTL, and balanced Th cell immune memory, which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. BCG at birth as an adjuvant to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants.


Assuntos
Vacina BCG , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Animais , Camundongos , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Baço/imunologia , Células Th1/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
Front Cell Infect Microbiol ; 13: 1324727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264727

RESUMO

Background: We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5ß1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5ß1 axis a common event in respiratory epithelial cells? Methods: We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results: We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5ß1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin ß1 chain, is highly expressed upon activation of integrin α5ß1, which in turn up-regulates autophagy. Conclusions: Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5ß1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5ß1 in this autophagy pathway.


Assuntos
Fibronectinas , Listeria monocytogenes , Integrina alfa5beta1 , Staphylococcus aureus , Triptofano Oxigenase , Autofagia , Células Epiteliais
9.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499532

RESUMO

To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.


Assuntos
Germinação , Sementes , Sementes/fisiologia , Plântula/fisiologia , Produção Agrícola/métodos , Radiação Ionizante , Estresse Fisiológico
10.
ACS Appl Mater Interfaces ; 14(45): 51018-51028, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322176

RESUMO

Wind energy harvesting and sensing have a huge prospect in constructing self-powered sensor nodes, but the energy transducing efficiency at low and ultra-low wind speeds is still limited. Herein, we proposed a Kármán vortex street driven membrane triboelectric nanogenerator (KVSM-TENG) for ultra-low speed wind energy harvesting and flow sensing. By introducing Kármán vortex in the KVSM-TENG, the cut-in wind speed of the KVSM-TENG decreased from 1 to 0.52 m/s that is the lowest cut-in wind speed in current TENGs. The instantaneous output density of the KVSM-TENG significantly increased by 1000 times and 2.65 times at the inlet wind speeds of 1 and 2 m/s, respectively. In addition, with the excellent energy transducing performance at the ultra-low speed range, the KVSM-TENG was successfully demonstrated to detect a weak leakage of gas pipeline (∼0.6 m/s) for alarming with high sensitivity. The interaction mechanism between the vortex and KVSM-TENG was systematically investigated. Through the simulation and experimental validation, the enhancement mechanism of vortex dependence on the cylinder diameter and placement location of KVSM-TENG was investigated in detail. The influence of parameters such as membrane length, width, thickness, and electrode gap on the performance of the KVSM-TENG was systematically studied. This work not only provided an ingenious strategy for ultra-low speed wind energy harvesting but also demonstrates the promising prospects for monitoring the air flow in the natural gas exploitation and transportation.

11.
Front Immunol ; 13: 977235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211408

RESUMO

Background: Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective: To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods: Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results: PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion: Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.


Assuntos
Asma , Hipersensibilidade , Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Alérgenos , Animais , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Prolina
12.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(4): 394-402, 2022 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38596954

RESUMO

OBJECTIVES: This study aimed to investigate the effects of farnesyltransferase (FTase) on the migration, invasion, and epithelial-mesenchymal transition (EMT) of SACC-LM and SACC-83 cells in salivary adenoid cystic carcinoma and determine the relative mechanism. METHODS: Three small interfering RNA (siRNA) sequences were designed and constructed based on the human FTase gene sequence. The SACC-LM and SACC-83 cells in the logarithmic growth period were used, and the expression of FTase was suppressed by liposomal transient transfection. The tested cells were categorized as the FTase-siRNA-1, FTase-siRNA-2, and FTase-siRNA-3 groups. Both negative control group (NC-siRNA) and blank control group (only transfection reagent was added) were set. The mRNA expression of FTase and HRAS was detected by quantitive real-time polymerase chain reaction, and the silencing efficiency was determined. The expression levels of FTase, HRAS, protein kinase B (AKT), phospho-AKT, p65, phospho-p65 (Ser563), E-cadherin, vimentin, matrix metalloproteinase (MMP)-9 protein, and HRAS membrane protein were detected by Western blot. Transwell assay and wound healing assay were used to detect the invasion and migration abilities of cells. RESULTS: The relative expression of FTase mRNA and protein in the FTase-siRNA-1 group decreased compared with those in the control group (P<0.05). HRAS mRNA and total protein expression had no significant difference (P>0.05), and the relative expression of HRAS membrane protein decreased (P<0.05). The relative expression of E-cadherin increased (P<0.05), vimentin decreased (P<0.05), and MMP-9 decreased (P<0.05). There was no significant difference in the relative expression levels of the RAS/PI3K/AKT/nuclear factor-κB signaling pathway-related proteins AKT and p65 (P>0.05), but the relative expression levels of phospho-AKT and phospho-p65 decreased. The invasion and migration ability of the FTase-siRNA-1 group significantly decreased compared with that in the control group (P<0.05). CONCLUSIONS: Silencing FTase in vitro could effectively inhibit the invasion and migration of SACC-LM and SACC-83 cells by interfering with the localization of the HRAS membrane protein and regulating the RAS/PI3K/AKT/nuclear factor-κB signaling pathway to mediate EMT.

13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(5): 510-517, 2021 Oct 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34636197

RESUMO

OBJECTIVES: This study aims to investigate the effect of RhoE expression on the migration and invasion of tongue squamous cell carcinoma (TSCC). METHODS: Forty-eight TSCC cases were selected from the Maxillofacial Surgery Center of Qingdao Municipal Hospital from 2017 to 2019. The expression of RhoE in the specimens (TSCC and adjacent tissues) was detected by immunohistochemistry, and RhoE mRNA and protein were extracted to further detect the expression of RhoE. SCC-4 and CAL-27 cells were selected for in vitro experiments. Transient transfection was used to overexpress RhoE. Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot analyses were conducted to detect the overexpression efficiency. Scratch test and Transwell cell invasion tests were used to detect the migration and invasion ability of TSCC, respectively. The expression levels of Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were detected by Western blot. Experimental data were analyzed by Graphpad prism 8.2.1 software. RESULTS: The expression level of RhoE in TSCC was significantly lower than that in adjacent tissues (P<0.05). The migration and invasion abilities of TSCC were significantly lower than those in the control group (P<0.05). The Western blot showed significantly lower expression levels of ROCK1, MMP-2, and MMP-9 in the experimental group than in the control group (P<0.05). CONCLUSIONS: RhoE expression is low in TSCC. Over expression RhoE in TSCC can significantly decrease its migration and invasion abilities. Hence, RhoE may play an important role in regulating the metastasis and invasion of TSCC and provide a new target for gene therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Proteínas rho de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Metaloproteinase 2 da Matriz , Invasividade Neoplásica , Língua , Quinases Associadas a rho
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(3): 328-335, 2021 Jun 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34041883

RESUMO

OBJECTIVES: The effect of isoprenylcysteine carboxymethyltransferase (ICMT) silencing on the migration and invasion of tongue squamous cell carcinoma was investigated by constructing the small interfering RNA (siRNA) of ICMT. METHODS: Through liposomal transfection, siRNA was transfected into human tongue squamous cell carcinoma CAL-27 and SCC-4 cells (ICMT-siRNA group) with a negative control group (transfected with NC-siRNA) and a blank control group (transfected with a transfection reagent but not with siRNA). Quantitative real-time polymerase chain reaction was performed to analyze the mRNA expression of ICMT and RhoA in each group of cells after transfection and to measure the silencing efficiency. Western blot was applied to examine the expression levels of ICMT, total RhoA, membrane RhoA, ROCK1, matrix metalloproteinase (MMP)-2, and MMP-9 proteins in each group. The migration and invasion abilities were evaluated via wound healing and Transwell motility assays. RESULTS: After CAL-27 and SCC-4 cells were transfected with ICMT-siRNA, the expression levels of ICMT genes and proteins decreased significantly in the experimental group compared with those in the negative and blank control groups (P<0.05). The mRNA and total protein expression levels of RhoA in the two groups were not significantly different (P>0.05). The expression levels of RhoA membrane protein, ROCK1, MMP-2, and MMP-9 decreased (P<0.05). The migration and invasion abilities were inhibited (P<0.05). CONCLUSIONS: The migration and invasion abilities of CAL-27 and SCC-4 cells were reduced significantly after the transfection of ICMT-siRNA, and the involved mechanism might be related to the RhoA-ROCK signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua , Transfecção , Quinases Associadas a rho
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(1): 64-73, 2021 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33723939

RESUMO

OBJECTIVES: This study aimed to explore the effects of silencing isoprenylcysteine carboxyl methyltransfe-rase (Icmt) through small interfering RNA (siRNA) interference on the proliferation and apoptosis of tongue squamous cell carcinoma (TSCC). METHODS: Three siRNA were designed and constructed for the Icmt gene sequence and were then transfected into TSCC cells CAL-27 and SCC-4 to silence Icmt expression. The tested cells were divided as follows: RNA interference groups Icmt-siRNA-1, Icmt-siRNA-2, and Icmt-siRNA-3, negative control group, and blank control group. The transfection efficiency of siRNA was detected by the fluorescent group Cy3-labeled siRNA, and the expression of Icmt mRNA was screened by quantitive real-time polymerase chain reaction (qRT-PCR) selected the experimental group for subsequent experiments. The expression of Icmt, RhoA, Cyclin D1, p21, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) were analyzed by Western blot. The proliferation abilities of TSCC cells were determined by cell counting kit-8 assay. The change in apoptosis was detected by AnnexinV-APC/propidium staining (PI) assay. Cell-cycle analysis was conducted by flow cytometry. RESULTS: The expression of Icmt mRNA and protein in TSCC cells significantly decreased after Icmt-siRNA transfection (P<0.05). No significant difference in RhoA mRNA and protein expression was detected (P>0.05), but the expression of RhoA membrane protein decreased compared with the negative control group and blank control groups (P<0.05). Cyclin D1 expression decreased, whereas p21 expression significantly increased and the relative expression of ERK protein in the experimental group did not significantly different that in the control group (P>0.05). However, the phosphorylation level of ERK was significantly reduced (P<0.05). The cell cycles of TSCC CAL-27 and SCC-4 were altered in G1/S, cell proliferation activity was inhibited, and apoptosis was induced (P<0.05). CONCLUSIONS: Silencing Icmt can effectively downregulate its expression in TSCC cells, reduce the RhoA membrane targeting localization and cell proliferation, and induce apoptosis. Thus, Icmt may be a potential gene therapy target for TSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua
16.
Oncol Lett ; 20(5): 123, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934692

RESUMO

The aim of the present study was to use The Cancer Genome Atlas (TCGA) database to identify tumor neoantigens, combined with a bioinformatics analysis to design and analyze antigen epitope peptides. Epitopes were screened using immunogenicity tests to identify the ideal epitope peptides to target tumor neoantigens, which can specifically activate the immune response of T cells. The high-frequency mutation loci (top 10) of colorectal, lung and liver cancer genes were screened using TCGA database. The antigenic epitope peptides with high affinity for major histocompatibility complex molecules were selected and synthesized using computer prediction algorithms, and were subsequently detected using flow cytometry. The cytotoxicity of specific cytotoxic T lymphocytes (CTLs) on peptide-loaded T2 cells was initially verified using interferon IFN-γ detection and a calcein-acetoxymethyl (Cal-AM) release assay. Tumor cell lines expressing point mutations in KRAS, TP53 and CTNNB1 genes were constructed respectively, and the cytotoxicity of peptide-induced specific CTLs on wild-type and mutant tumor cells was verified using a Cal-AM release assay and carboxyfluorescein succinimidyl ester-propidium iodide staining. The high-frequency gene mutation loci of KRAS proto-oncogene (KRAS) G12V, tumor protein p53 (TP53) R158L and catenin ß1 (CTNNB1) K335I were identified in TCGA database. A total of 3 groups of wild-type and mutant peptides were screened using a peptide prediction algorithm. The CTNNB1 group had a strong affinity for the human leukocyte antigen-A2 molecule, as determined using flow cytometry. The IFN-γ secretion of specific CTLs in the CTNNB1 group was the highest, followed by the TP53 and the KRAS groups. The killing rate of mutant peptide-induced specific CTLs on peptide-loaded T2 cells in the CTNNB1 group was higher compared with that observed in the other groups. The killing rate of specific CTLs induced by mutant peptides present on tumor cells was higher compared with that induced by wild-type peptides. However, when compared with the TP53 and KRAS groups, specific CTLs induced by mutant peptides in the CTNNB1 group had more potent cytotoxicity towards mutant and wild-type tumor cells. In conclusion, point mutant tumor neoantigens screened in the three groups improved the cytotoxicity of specific T cells, and the mutant peptides in the CTNNB1 group were more prominent, indicating that they may activate the cellular immune response more readily.

17.
Int J Clin Exp Pathol ; 13(3): 332-346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269671

RESUMO

OBJECTIVE: To investigate the effect of the AKT1 gene mutation hotspot E17K on the growth, proliferation, survival, and migration of breast cancer cells, based on the survival and prognosis of breast cancer patients with the AKT1 E17K mutation shown in TCGA database. METHODS: The survival and incidence rates of AKT1 E17K mutation hotspots in breast cancer and other cancers were extracted from the Cancer Genome Atlas (TCGA). The recombinant eukaryotic expression plasmid AKT1 E17K-pIRES2-EGFP was constructed and transfected into breast cancer MCF-7, and MDA-MB-231 cell lines. MCF-7 and MDA-MB-231 cell lines were randomly divided into blank control groups, empty plasmid groups, and recombinant plasmid groups. The growth curve was drawn using the cell counting method. The proliferation and division of breast cancer cells were detected by CFSE fluorescent dye tracking. Apoptosis was detected by Annexin V/PI double labeling and cell vitality was detected using MTT assays, and cell migratory ability was detected by cell scratch and transwell chamber tests. RESULTS: In breast cancer, and other cancers, the overall survival rate of patients with an AKT E17K mutation was higher than that of patients with non-point mutation, and this mutation was the most common found in breast cancer. Compared with the wild type, the growth function of mutant MCF-7 cells was inhibited (P < 0.05), as was the proliferation of MCF-7 cells expressing the AKT1 E17K mutation gene (P < 0.001). The late apoptosis rate of mutant breast cancer cells increased (P < 0.05) and the viability was lower than that of wild-type cells (P < 0.05). Mutant MDA-MB-231 cells showed increased migration ability when compared to wild-type MDA-MB-231 cells (P < 0.05). CONCLUSIONS: The expression of the AKT1 E17K mutation hotspot can inhibit the growth, proliferation, and survival ability of breast cancer cells, and promote apoptosis, while it also improves their migratory ability. The survival and prognosis of breast cancer patients with this mutation are good, which may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.

18.
Dis Markers ; 2019: 3090364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191747

RESUMO

BACKGROUND: Instability of atherosclerotic plaques is associated with the occurrence of stroke. Microembolic signals (MESs) are an indicator of unstable plaque. A relationship between plasma osteoprotegerin (OPG) and ischemic stroke has already been identified. The aim of this study was to investigate whether plasma OPG levels have a relationship with MESs and to evaluate the feasibility of OPG as a biomarker of stroke severity and occurrence of MESs. METHODS: Our study consisted of 127 patients with large artery atherosclerosis stroke and 56 controls. Patients were classified into subgroups based on stroke severity and the occurrence of MESs. MES-monitoring was performed for 60 min using transcranial Doppler within 72 h of stroke onset. Stroke severity at admission was assessed by the National Institutes of Health Stroke Scale. RESULTS: Plasma OPG levels were significantly associated with stroke, MESs, and stroke severity at admission (adjusted OR [95% CI]: 1.002 [1.001-1.003] p < 0.001; 1.002 [1.001-1.003] p = 0.001; 1.001 [1.000-1.002] p = 0.028). When plasma OPG levels were used to determine the stroke severity, the area under the receiver-operating characteristic curve (AUC) was 0.734 (95% CI: 0.625-0.843) based on a cutoff value of 1998.44 pg/ml; the sensitivity and specificity of this test were 80.6% and 65.6%, respectively. Furthermore, when the levels of OPG were used to distinguish the presence of MESs, the AUC was 0.766 (95% CI: 0.672-0.860); the cutoff value was 2107.91 pg/ml. The sensitivity of this cutoff value was 68.8% and the specificity was 73.7%. CONCLUSIONS: Plasma OPG levels correlate with stroke severity and the occurrence of MESs.


Assuntos
Isquemia Encefálica/sangue , Embolia Intracraniana/sangue , Osteoprotegerina/sangue , Acidente Vascular Cerebral/sangue , Idoso , Biomarcadores/sangue , Isquemia Encefálica/patologia , Feminino , Humanos , Embolia Intracraniana/epidemiologia , Embolia Intracraniana/patologia , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia
19.
Curr Med Sci ; 39(3): 363-370, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31209804

RESUMO

Respiratory syncytial virus (RSV) infection is the primary cause of respiratory disease in infants. The formalin-inactivated RSV (FI-RSV) vaccine resulted in an enhanced respiratory disease (ERD) in infants upon natural RSV infection, which is a major obstacle for development of safe and efficacious vaccines. Excessive and uncontrolled Th immune responses could be involved in the ERD. Agonists of TLRs are used as adjuvants to guide the type of immune response induced by vaccines. We evaluated the impact of lipopolysaccharide (LPS), the agonist of TLR4, on ERD as the adjuvant of FI-RSV. The results showed that LPS remarkably inhibited FI-RSV-enhanced lung inflammation, mucus production, airway inflammatory cell infiltration, and inflammatory cytokines following RSV challenge. Interestingly, LPS inhibited both Th2 and Th17 type cytokines in lungs of FI-RSV-immunized mice following RSV challenge, without an increase in the Th1 type cytokines, suggesting a controlled immune response. In contrast, Pam3Cys and Poly(I:C), the agonist of TLR1/2 or TLR3, partly inhibited FI-RSV-enhanced lung inflammation. Pam3Cys inhibited Th17 type cytokine IL-17, but promoted both Th1 and Th2 type cytokines. Poly(I:C) inhibited Th2 and Th17 type cytokines, but promoted Th1 type cytokines. In addition, LPS promoted IgG and IgG2a antibody production, which might provide protection from RSV challenge. These results suggest that LPS inhibits ERD without impairment in antibody production and protection, and the mechanism appears to be related with regulation of Th responses induced by FI-RSV.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Antivirais/biossíntese , Lipopolissacarídeos/farmacologia , Pneumonia/prevenção & controle , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Animais , Feminino , Formaldeído , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Lipoproteínas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/patologia , Poli I-C/farmacologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/virologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/virologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/virologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Vacinação , Vacinas de Produtos Inativados
20.
Int J Biol Macromol ; 131: 282-292, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876896

RESUMO

S. cerevisiae-derived-beta-d-glucan (S. cerevisiae-BG) is a natural polysaccharide with various biological effects. The present study was to investigate the protective effect of S. cerevisiae-BG on the injury induced by high linear-energy-transfer (LET) carbon ion irradiation and to reveal the protective mechanisms. Female mice were orally administrated with S. cerevisiae-BG before irradiation. 30-day survival of 6 Gy irradiated-mice was monitored. The damage and recovery of hematopoietic system were evaluated after 2 Gy irradiation, cytokines in plasma were detected, transcriptomics of bone marrow mononuclear cells (BMMNCs) were detected and analyzed. The mortality results showed that S. cerevisiae-BG could prolong the survival of mice exposed to 6 Gy. The results of BMMNCs injury analysis showed that S. cerevisiae-BG could reduce the ROS level, mitigate DNA damage and apoptosis. S. cerevisiae-BG increased the plasma radioprotective cytokines level in irradiated mice. Transcriptomics analysis revealed that S. cerevisiae-BG modulated the gene expression in BMMNCs of irradiated mice, 256 genes were significantly up-regulated and 97 genes were significantly down-regulated. Gene function and Gene Ontology analysis indicated the key genes related to hematopoiesis and immunity. Pathway analysis revealed that these up-regulated genes mainly focus on PI3K-Akt pathway and down-regulated genes mainly focus on MAPK pathway. These data contribute to understanding the molecular mechanisms of the radioprotective effect of S. cerevisiae-BG.


Assuntos
Glucanos/farmacologia , Radiação Ionizante , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Glucanos/química , Camundongos , Saccharomyces cerevisiae/química , Taxa de Sobrevida , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA