Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400219, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657266

RESUMO

The intricate tumor microenvironment in triple-negative breast cancer (TNBC) hampers chemotherapy and immunotherapy efficacy due to dense extracellular matrix (ECM) by tumor-associated fibroblasts (TAFs). Nanoparticle-based therapies, especially "all-in-one" nanoparticles, have shown great potential in combined drug delivery strategies to reshape the tumor microenvironment and enhance therapeutic efficiency. However, these "all-in-one" nanoparticles suffer from limitations in targeting different target cells, uncontrollable dosing ratio, and disregarding the impact of delivery schedules. This study prepared cell membrane fusion liposomes (TAFsomes and CCMsomes) to load FDA-approved antifibrotic drug pirfenidone (PFD/TAFsomes) and antitumor drug doxorubicin (DOX/CCMsomes). These liposomes can specifically target TAFs cells and tumor cells, and combined administration can effectively inhibit TAFs activity, reshape the tumor microenvironment (TME), and significantly enhance the tumor chemotherapy efficacy. Combined drug delivery defeats "all-in-one" liposomes (DOX/PFD/Liposomes, DOX/PFD/TAFsomes, and DOX/PFD/CCMsomes) by flexibly adjusting the drug delivery ratio. Moreover, an asynchronous delivery strategy that optimizes the administration schedule not only further improves the therapeutic effect, but also amplifies the effectiveness of α-PD-L1 immunotherapy by modulating the tumor immune microenvironment. This delivery strategy provides a personalized treatment approach with clinical translation potential, providing new ideas for enhancing the therapeutic effect against solid tumors such as TNBC.

2.
J Med Chem ; 67(9): 7301-7311, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38635879

RESUMO

Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated ß-galactosidase (SA-ß-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-ß-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.


Assuntos
Senescência Celular , Galactose , Pró-Fármacos , Proteólise , Humanos , Animais , Senescência Celular/efeitos dos fármacos , Galactose/química , Galactose/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Camundongos , Proteólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosidase/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células A549 , Etoposídeo/farmacologia , Senoterapia/farmacologia , Senoterapia/química , Quimera de Direcionamento de Proteólise
3.
Nat Commun ; 15(1): 2073, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453918

RESUMO

Cholesterol (Chol) fortifies packing and reduces fluidity and permeability of the lipid bilayer in vesicles (liposomes)-mediated drug delivery. However, under the physiological environment, Chol is rapidly extracted from the lipid bilayer by biomembranes, which jeopardizes membrane stability and results in premature leakage for delivered payloads, yielding suboptimal clinic efficacy. Herein, we report a Chol-modified sphingomyelin (SM) lipid bilayer via covalently conjugating Chol to SM (SM-Chol), which retains membrane condensing ability of Chol. Systemic structure activity relationship screening demonstrates that SM-Chol with a disulfide bond and longer linker outperforms other counterparts and conventional phospholipids/Chol mixture systems on blocking Chol transfer and payload leakage, increases maximum tolerated dose of vincristine while reducing systemic toxicities, improves pharmacokinetics and tumor delivery efficiency, and enhances antitumor efficacy in SU-DHL-4 diffuse large B-cell lymphoma xenograft model in female mice. Furthermore, SM-Chol improves therapeutic delivery of structurally diversified therapeutic agents (irinotecan, doxorubicin, dexamethasone) or siRNA targeting multi-drug resistant gene (p-glycoprotein) in late-stage metastatic orthotopic KPC-Luc pancreas cancer, 4T1-Luc2 triple negative breast cancer, lung inflammation, and CT26 colorectal cancer animal models in female mice compared to respective FDA-approved nanotherapeutics or lipid compositions. Thus, SM-Chol represents a promising platform for universal and improved drug delivery.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Humanos , Feminino , Camundongos , Animais , Bicamadas Lipídicas/química , Esfingomielinas/química , Lipossomos/química , Fosfolipídeos/química , Colesterol/química
4.
Biomaterials ; 306: 122477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309054

RESUMO

Camptothesome is a sphingomyelin-conjugated camptothecin (SM-CSS-CPT) nanovesicle that fortified the therapeutic delivery of CPT in diverse cancer types. To mitigate the Camptothesome-induced IDO1 negative feedback mechanism, we had co-encapsulated, indoximod (IND, IDO1 inhibitor) into Camptothesome using doxorubicin-derived IND (DOX-IND). To maximize the therapeutic potential of DOX-IND/Camptothesome, herein, we first dissected the synergistic drug ratio (DOX-IND/SM-CSS-CPT) via systematical in vitro screening. DOX-IND/Camptothesome with optimal drug ratio synchronized in vivo drug delivery with significantly higher tumor uptake compared to free drugs. This optimum DOX-IND/Camptothesome outperformed the combination of Camptothesome, Doxil and IND or other IDO1 inhibitors (BMS-986205 or epacadostat) in treating mice bearing late-stage MC38 tumors, and combination with immune checkpoint blockade (ICB) enabled it to eradicate 60 % of large tumors. Further, this optimized co-delivery Camptothesome beat Folfox and Folfiri, two first-line combination chemotherapies for colorectal cancer in antitumor efficacy and exhibited no side effects as compared to the severe systemic toxicities associated with Folfox and Folfiri. Finally, we demonstrated that the synergistic DOX-IND/Camptothesome was superior to the combined use of Onivyde + Doxil + IND in curbing the advanced orthotopic CT26-Luc tumors and eliminated 40 % tumors with complete metastasis remission when cooperated with ICB, eliciting stronger anti-CRC immune responses and greater reversal of immunosuppression. These results corroborated that with precise optimal synergistic drug ratio, the therapeutic potential of DOX-IND/Camptothesome can be fully unleased, which warrants further clinical investigation to benefit the cancer patients.


Assuntos
Neoplasias Colorretais , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
5.
Nat Commun ; 14(1): 7235, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945606

RESUMO

Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA. Epacasome shows improved pharmacokinetics and tumour accumulation with efficient intratumoural drug release and deep tumour penetration. Additionally, it outperforms free EPA for anticancer efficacy, potentiating PD-1 blockade with boosted cytotoxic T lymphocytes (CTLs) and reduced regulatory T cells and myeloid-derived suppressor cells responses in a B16-F10 melanoma model in female mice. By co-encapsulating immunogenic dacarbazine, Epacasome further enhances anti-tumor effects and immune responses through the upregulation of NKG2D-mediated CTLs and natural killer cells responses particularly when combined with the PD-1 inhibitor in the late-stage metastatic B16-F10-Luc2 model in female mice. Furthermore, this combination prevents tumour recurrence and prolongs mouse survival in a clinically relevant, post-surgical melanoma model in female mice. Epacasome demonstrates potential to synergize with PD-1 blockade for improved response to melanoma immunotherapy.


Assuntos
Melanoma Experimental , Esfingomielinas , Feminino , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Melanoma Experimental/tratamento farmacológico , Oximas , Ativação Linfocitária , Imunoterapia
6.
Int J Pharm ; 634: 122655, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36720448

RESUMO

Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Imunoterapia , Nanotecnologia , Nanopartículas/uso terapêutico
7.
J Control Release ; 349: 929-939, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926754

RESUMO

Camptothesome is an innovative nanovesicle therapeutic comprising the sphingomyelin-derived camptothecin (CPT) lipid bilayer. In this work, we deciphered that Camptothesome was taken up by colorectal cancer (CRC) cells through primarily the clathrin-mediated endocytotic pathway and displayed the potential of eliciting robust immunogenic cancer cell death (ICD) via upregulating calreticulin, high mobility group box 1 protein (HMGB-1), and adenosine triphosphate (ATP), three hallmarks involved in the induction of ICD. In addition, use of dying MC38 tumor cells treated with Camptothesome as vaccine prevented tumor growth in 60% mice that received subsequent injection of live MC38 cells on the contralateral flank, validating Camptothesome was a legitimate ICD inducer in vivo. Camptothesome markedly reduced the acute bone marrow toxicity and gastrointestinal mucositis associated with free CPT and beat free CPT and Onivyde on anti-CRC efficacy and immune responses in a partially interferon gamma (IFN-γ)-dependent manner. Furthermore, Camptothesome enhanced the efficacy of immune checkpoint inhibitors to shrink late-stage orthotopic MC38 CRC tumors with diminished tumor metastasis and markedly prolonged mice survival.


Assuntos
Neoplasias Colorretais , Morte Celular Imunogênica , Trifosfato de Adenosina , Animais , Calreticulina/metabolismo , Calreticulina/uso terapêutico , Linhagem Celular Tumoral , Clatrina/metabolismo , Neoplasias Colorretais/patologia , Proteínas HMGB/metabolismo , Inibidores de Checkpoint Imunológico , Interferon gama/metabolismo , Irinotecano , Bicamadas Lipídicas , Camundongos , Esfingomielinas
8.
ACS Appl Mater Interfaces ; 13(33): 39934-39948, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34396771

RESUMO

There are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors. A laser/glutathione (GSH)-activatable nanosystem with tumor penetration for achieving highly efficient immunotherapy is reported. The core of the nanosystem was synthesized by coordinating zinc ions with GSH-activatable oxaliplatin (OXA) prodrugs and carboxylated phthalocyanine. Such an OXA/phthalocyanine-based coordination polymer nanoparticle (OPCPN) was wrapped by a phospholipid bilayer and NTKPEG. NTKPEG is a PEGylated indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor prodrug containing a thioketal (TK) linker, which was modified on the OPCPN (OPCPN@NTKPEG). Upon the laser irradiation tumor site, ROS production of the OPCPN@NTKPEG triggers cleavage of NTKPEG by degradation of TK for promoted tumor penetration and uptake. OXA, phthalocyanine, and IDO1 inhibitor were released by the intracellular high-level GSH. OXA inhibits cell growth and is combined with photodynamic therapy (PDT) to induce immunogenic cell death (ICD). The IDO1 inhibitor reversed the ITM by suppressing IDO1-mediated Trp degradation and exhaustion of cytotoxic T cells. Laser/GSH-activatable drug delivery was more conducive to enhancing ICD and reversing ITM in deep tumors. Chemo-PDT with OPCPN@NTKPEG significantly regressed tumor growth and reduced metastasis by improved cancer immunotherapy.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Glutationa/química , Indóis/química , Nanopartículas/química , Oxaliplatina/química , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Glutationa/metabolismo , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/efeitos da radiação , Imunoterapia , Indóis/farmacocinética , Isoindóis , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Oxaliplatina/farmacocinética , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Polietilenoglicóis/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
9.
Mol Pharm ; 18(8): 2889-2905, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34260250

RESUMO

Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.


Assuntos
Antineoplásicos/administração & dosagem , Fibroblastos Associados a Câncer/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Humanos , Microambiente Tumoral/efeitos dos fármacos
10.
Int J Pharm ; 598: 120333, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540008

RESUMO

Tumor-associated fibroblasts (TAFs) play an important role in tumor progression and therapeutic response, especially in the immunosuppressive tumor microenvironment (TME). To remodel immunosuppressive TME of 4T1 tumor, we developed a nano liposome to deliver silybin (SLN, an anti-liver fibrosis Chinese Traditional Medicine). Liposomal silybin (SLN/LIP) possessed a spherical shape with particle sizes of 75.2 nm, high stability, and good accumulation in the tumor site. After treated with SLN/LIP, α-SMA positive TAFs and the deposition of stroma were decreased significantly. SLN/LIP also changed the tumor immune microenvironment through the increase of IFN-γ and IL-12, as well as reduced of TGF-ß, SDF-1, IL6 and TNF-α. Importantly, SLN/LIP enhanced the infiltration of cytotoxic T cells (CTLs) and transformed a "cold" tumor into a "hot" tumor. To achieve the higher antitumor efficacy, an immunogenic cell death (ICD) inducer, liposomal doxorubicin (DOX/LIP) was combined with SLN/LIP. The combination treatment led to trigger immunogenic tumor apoptosis, and enhance antitumor immunity, therefore, improved anti-tumor efficiency, and further prolonged survival duration. The combination of liposomal silybin and liposomal doxorubicin might be a new chemo-immunotherapy approach for triple negative breast cancer (TNBC) tumor treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Morte Celular Imunogênica , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
11.
Pharm Res ; 37(12): 242, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188481

RESUMO

PURPOSE: In order to improve the therapeutic efficiency of the chemotherapeutic drug paclitaxel in tumors, a folate-based Paclitaxel nanoemulsion (FNEs) was developed for tumor targeted treatment. METHODS: In this study, we designed a folate-targeted nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) based on the traditional nanoemulsion using the principle of long-circulation targeting receptor mediated. The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) was fabricated using high-pressure homogenization with a microfluidizer. RESULTS: The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) can improve the delivery efficiency of nanocarriers at the tumor site by virtue of the high expression of folate receptors on the tumor surface. Malvern Nanoseries device and transmission electron microscopy (TEM) analyses showed that the nanoemulsions were spherical with an average diameter of 140 nm. The nanoemulsions can effectively carry paclitaxel (PTX) with an encapsulation rate of about 95%. And in vitro experiments have shown that it can efficiently increase the uptake of PTX in 4 T1 breast cancer cells and FNEs had a targeting capability hundredfold higher than that of PTX-loaded nanoemulsions (PTX-NEs) without folate. In vivo experiments have shown that the pharmacokinetic parameters of FNEs were better than those of other PTX groups and FNEs can significantly enhance circulation time in the body of the subcutaneously implanted 4 T1 breast cancer in mice, increase the accumulation of chemotherapy drugs at tumor sites and effectively inhibit tumor growth with lower system toxicity. CONCLUSIONS: This study can effectively improve the therapeutic efficiency of chemotherapy drugs for tumors, and provide an useful reference for solving the problem of low efficacy of chemotherapy drugs in clinical treatment of tumors. Graphical Abstract Schematic representation of Folic acid/PEG-DSPE/nano-emulsion (FNEs) specifically target tumor cells and enhanced anti-tumor effects.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Ácido Fólico/metabolismo , Nanopartículas , Paclitaxel/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Composição de Medicamentos , Emulsões , Feminino , Ácido Fólico/química , Transportadores de Ácido Fólico/metabolismo , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Nanotecnologia , Paclitaxel/química , Paclitaxel/farmacocinética , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos
12.
Mol Pharm ; 17(5): 1516-1526, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243181

RESUMO

It is well-known that large size nanoparticles stay for a long time in the circulation system, but show poor tissue penetration and low cellular uptake. In order to reconcile the conflicting needs for extended circulation time, extensive tumor tissue penetration, and enhanced cellular uptake for nanodrug delivery systems, we designed DOX-containing hypersensitive nanoparticles that responded to the tumor microenvironment for programmed DOX delivery. A supersensitive polymer material, poly(2-ethyl-2-oxazoline)-poly(methacryloyl sulfadimethoxine), was synthesized (PEOz-b-PSD, pKa = 6.96). At the physiological environment, PEOz-b-PSD and polyamidoamine/DOX (PAMAM/DOX) can form nanoparticles, PEOz-b-PSD/PAMAM/DOX (PEPSD/PAM/DOX), via electrostatic adsorption. The PEPSD/PAM/DOX has an intact structure, which can prolong circulation time. While in the tumor environment, the PEOz-b-PSD was rapidly protonated and showed charge reversal, leading the detachment of PEOz-b-PSD from the nanoparticles; then the large size nanoparticles with a negative charge (PEPSD/PAM/DOX) instantaneously turn into positively charged ultrafine nanoparticles. The sudden inversion of size and charge can effectively improve tumor accumulation and internal penetration. After entering tumor cells, nanoparticles can release drugs quickly through the action of a PAMAM proton sponge, resulting in enhanced tumor inhibition. Our results proved that the programmed nanoparticles could remarkably enhance the in vivo antitumor efficacy and reduce cardiotoxicity of DOX. This study designed ultrasensitive nanoparticles in the tumor microenvironment, which appear to be beneficial for enhancing the treatment efficacy of DOX in solid tumors.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
ACS Biomater Sci Eng ; 6(4): 2107-2116, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455334

RESUMO

Endogenous active substance guanosine diphosphate (GDP) is involved in the physiological process of DNA transfection and expression in the cytoplasm by binding to Ran proteins. To substantially improve the gene delivery efficiency of nanoparticles, phospholipid-coated Ca(P-GDP)/pDNA/NLS hybrid nanoparticles were prepared using GDP as a common biophosphorus source based on the biological process of exogenous gene expression in the cells. This nanoparticle has a relative uniform particle size distribution and in vitro stability. The addition of GDP in nanoparticles significantly enhanced the gene expression efficiency with good biocompatibility. Moreover, an in vivo study further verified that hybrid nanoparticles were more effective in increasing the p53 gene expression, thus significantly inhibiting the tumor growth in the heterotopic tumor model of nude mice. These results demonstrated that phospholipid-coated Ca(P-GDP) nanoparticles were a potential nonviral gene vector to promote gene expression. The experimental results confirmed the feasibility of designing a delivery system based on active substances and provided a new solution to improve the transfection efficiency of gene drugs.


Assuntos
Terapia Genética , Guanosina Difosfato , Nanopartículas , Neoplasias , Animais , Expressão Gênica , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Fosfolipídeos , Proteína ran de Ligação ao GTP
14.
J Pharm Sci ; 109(8): 2426-2436, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31760084

RESUMO

Chemotherapy remains one of the most effective treatments for many cancers in a clinic. At present, various targets have been used to modify the PEGylated liposomes for doxorubicin (Dox) delivery, but the antitumor effect of Dox is not satisfactory. Therefore, combination chemotherapeutics has been considered as a promising method to improve tumor treatment. These years, RAF/MEK/ERK-mediated cell signaling pathway has been discovered to inhibit the growth of tumors. Thus, Sorafenib tosylate (Sor) was used in this study, which directly inhibited tumor cell proliferation through blocking RAF/MEK/ERK-mediated cell signaling pathway and indirectly inhibited tumor cell growth through blocking angiogenesis by VEGFR and PDGF. In this article, we develop a "combination delivery system" to deliver the hydrophobic drug (Sor) in phospholipid bilayer and hydrophilic drug (Dox) in inner cores for enhancing the antitumor effect. Moreover, in vitro experiments verified whether the physicochemical properties of carriers were stable and transferrin-modified liposomes displayed the highest uptake. The results of in vivo experiments showed that the codelivery system inhibited the tumor growth more effectively than monotherapy. Overall, this combination delivery system for delivering the hydrophobic and hydrophilic drugs simultaneously may offer a novel strategy for breast cancer treatment and provide a reference for the possibility of clinical usage.


Assuntos
Neoplasias , Transferrina , Animais , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Sorafenibe
15.
Acta Biomater ; 100: 118-131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568878

RESUMO

P53 inactivation is often achieved through gene mutation and the excessive activity of its major negative regulator, murine double minute 2 protein (MDM2). In the present study we utilized a PAMAM-OH derivative (PAMSPF) to co-deliver p53 plasmid and MDM2 inhibitor (RG7388) to the tumor site and evaluated the synergistic anti-tumor effect of p53 plasmid and RG7388. PAMSPF was able to condense DNA and encapsulate RG7388 to form spherical nanoparticles (PAMSPF/p53/RG) with particle sizes of around 200 nm, and remain stable in the presence of heparin and nuclease. The drug loading capacity and encapsulation efficiency of RG7388 in PAMSPF/p53/RG were 0.5% and 92.5%, respectively. The p53 expressions in MDA-MB-435, p53-wild type MCF-7 cells (MCF-7/WT) and p53-silenced MCF-7 cells (MCF-7/S) treated with PAMSPF/p53/RG were promoted significantly. As a result, PAMSPF/p53/RG was able to inhibit cell proliferation, arrest cell cycle, and induce cell apoptosis of MDA-MB-435, MCF-7/WT and MCF-7/S cells. PAMSPF/p53/RG suppressed human umbilical vascular endothelial cells (HUVECs) migration, invasion and tube formation through decreasing the VEGF expression. And the biological activities described above of PAMSPF/p53/RG were significantly higher than those of PAMSPF/53 and PAMSPF/RG, exhibiting the synergistic actions of p53 plasmid and RG7388. In addition, intravenous administration of PAMPSF/p53/RG inhibited tumor growth of MDA-MB-435 and MCF-7/WT xenograft mice models, and induced no substantial weight loss. PAMSPF/p53/RG also reduced cell proliferation, and induced cell apoptosis in vivo based on the immunohistochemistry results. Collectively, PAMSPF/p53/RG is an excellent system for gene and drug co-delivery, and the combined treatment of p53 plasmid and RG7388 possesses a synergistic antitumor activity both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: In the present study we utilized a PAMAM-OH derivative (PAMSPF) to co-deliver p53 plasmid and RG7388 (MDM2 inhibitor) and evaluated their synergistic anti-tumor effect. PAMSPF could condense p53 plasmid and encapsulate RG7388 to form nanoparticles (PAMSPF/p53/RG). The p53 expressions in MDA-MB-435, p53-wild type MCF-7 cells (MCF-7/WT) and p53-silenced MCF-7 cells (MCF-7/S) treated with PAMSPF/p53/RG were promoted significantly. As a result, PAMSPF/p53/RG could inhibit cell proliferation, arrest cell cycle, and induce cell apoptosis of three kinds of cells. In addition, intravenous administration of PAMPSF/p53/RG inhibited tumor growth of MDA-MB-435 and MCF-7/WT xenograft mice models. Collectively, PAMSPF/p53/RG is an excellent system for gene and drug co-delivery, and the combined treatment of p53 plasmid and RG7388 possesses a synergistic antitumor activity.


Assuntos
Dendrímeros/química , Técnicas de Transferência de Genes , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/administração & dosagem , para-Aminobenzoatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Peso Corporal/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
16.
Acta Biomater ; 96: 456-467, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260821

RESUMO

Inefficient tumor accumulation and controlling drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. Inspired by the biological structure and function of low-density lipoprotein (LDL), a pH-sensitive ApoB-100/Oleic acid-DOX/NLC (AODN) nanoparticle based on nanostructured lipid carrier (NLC) was prepared in this study. The biological composition of ApoB-containing NLC nanoparticles is similar to that of LDL, which can effectively increase the cycle time and targeting efficiency of nanoparticles. Meantime, the doxorubicin prodrug strategy was used to increase the drug loading of the nanoparticles and achieve drug-sensitive release. In vitro results indicated that AODN nanoparticles can cause more drugs to be phagocytosed by LDL receptor-mediated endocytosis, thus showing high cytotoxicity in 4T1 cells. In vivo experiments have shown that pH-sensitive AODN nanoparticles can cause more drugs to accumulate in the tumor site, reducing systemic toxicity and effectively inhibiting orthotopic breast cancer. These data provide strong evidence that the strategy of combining bionics and prodrug technology provides a new approach to improving the efficiency of chemotherapy drugs in cancer treatment. STATEMENT OF SIGNIFICANCE: Inefficient tumor accumulation and controlling drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. Inspired by low density lipoprotein, a pH-sensitive ApoB-100/oleic acid-DOX/NLC (AODN) nanoparticle based on nanostructured lipid carrier (NLC) was prepared. Its biological composition is similar to that of LDL, which can effectively increase the cycle time and targeting efficiency of drugs. Then, the doxorubicin prodrug strategy was used to increase the drug loading of the nanoparticles and achieve drug-sensitive release. AODN nanoparticles can effectively inhibit tumor by effectively accumulating at tumor site and controlling release. The strategy of combining bionics and prodrug technology provides a new approach to improving the efficiency of chemotherapy drugs in cancer treatment.


Assuntos
Doxorrubicina/uso terapêutico , Lipídeos/química , Lipoproteínas LDL/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Apolipoproteínas B/metabolismo , Peso Corporal , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Ácido Oleico/síntese química , Ácido Oleico/química , Pró-Fármacos/farmacologia , Distribuição Tecidual , Resultado do Tratamento , Carga Tumoral
17.
J Mater Chem B ; 6(21): 3466-3474, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254443

RESUMO

Calcium phosphate (CaP) nanoparticles have been considered as a non-viral gene delivery vehicle, but the weakness of inconsistent and low transfection efficiencies is limited to its progress. In order to overcome these weaknesses and to improve the consistency and efficiency of CaP nanoparticles, a pH-sensitive core-shell system mPEG-Pam/CaP/HMGB1/pDNA hybrid nanoparticle was prepared. The PEGylated pamidronate (mPEG-Pam) segment forms a hydrophilic outer shell for enhancing the stability of nanoparticles and HMGB1 was used as a nucleus locating signal (NLS) to improve the efficiency of nucleus importation and gene expression. The formed hybrid nanoparticles presented small particle size and desired serum stability with the assistance of the mPEG-Pam outer layer. The results of RFP fluorescence intensity analysis in HepG2 cells showed that the hybrid nanoparticles exhibited higher transfection capability with the help of HMGB1 as compared to that of the nanoparticles without the HMGB1. More importantly, after intravenous injection in tumor-bearing S180 nude mice, the hybrid nanoparticles specifically accumulated into the tumor regions by EPR effect, leading to efficient gene expression and anti-tumor effects in vivo. We concluded that the hybrid nanoparticles possessed potential as a safe and effective pDNA delivery system.

18.
ACS Appl Mater Interfaces ; 10(3): 2874-2889, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29285934

RESUMO

It has been widely accepted that lymph nodes (LNs) are critical targets of cancer vaccines because antigen presentation and initiation of T-cell-mediated immune responses occur primarily at these locations. In this study, amphiphilic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA) combined with carboxylterminated-Pluronic F127 was used to construct mixed micelles [carboxylated-nanoparticles (NPs)] for codelivery of antigen ovalbumin (OVA) and Toll-like receptor-7 agonist CL264 (carboxylated-NPs/OVA/CL264) to the LN-resident dendritic cells (DCs). The results showed that the small, sub-60 nm size of the self-assembled mixed micelles enables them to rapidly penetrate into lymphatic vessels and reach draining lymph nodes after subcutaneous injection. Furthermore, the surface modification with carboxylic groups imparted the carboxylated-NPs with endocytic receptor-targeting ability, allowing for DC internalization of carboxylated-NPs/OVA/CL264 via the scavenger receptor-mediated pathway. Because stimulation of CL264 in early endosomes will lead to a more effective immune response than that in late endo/lysosomes, the mass ratio of PEOz-PLA to carboxylated-Pluronic F127 in the mixed micelles was adjusted to release the encapsulated CL264 to the early endosome, resulting in increased expression of costimulatory molecules and secretion of stimulated cytokines by DCs. Moreover, the incorporation of PEOz outside the micellar shell effectively augmented MHC I antigen presentation through facilitating endosome escape and cytosolic release of antigens. This in turn evoked potent immune responses in vivo, including activation of antigen-specific T-cell responses, production of antigen-specific IgG antibodies, and generation of cytotoxic T-lymphocyte responses. Finally, immunization with the codelivery system in E.G7-OVA tumor-bearing mice could not only significantly inhibit tumor growth but also markedly prolong the survival of tumor-bearing mice. Taken together, carboxylated-NPs/OVA/CL264 have demonstrated great potential for clinical applications as an effective antitumor vaccine for further immunotherapy.


Assuntos
Linfonodos , Animais , Antígenos , Células Dendríticas , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Nanopartículas , Ovalbumina , Polímeros
19.
J Pharm Sci ; 106(8): 2053-2059, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28483423

RESUMO

This research focused on optimizing the preparations of pDNA-loaded calcium phosphate (CaP) nanoparticles by employing a 3-factor, 3-level Box-Behnken design. Results indicated that a Ca/P ratio of 189.56, pH of 7.82, and a stirring speed of 528.83 rpm were the optimum conditions for preparation of the nanoparticles. The size of the optimized CaP/pDNA nanoparticles was 61.3 ± 3.64 nm, with a polydispersity index of 0.341 and an encapsulation efficiency of up to 92.11%. The optimized CaP/pDNA nanoparticles had high transfection efficiency and demonstrated good biocompatibility in vitro. Therefore, the Box-Behnken design method was successful in providing desirable CaP nanoparticle pDNA delivery systems by optimizing the experimental factors.


Assuntos
Fosfatos de Cálcio/química , DNA/administração & dosagem , Nanopartículas/química , Plasmídeos/administração & dosagem , Transfecção/métodos , Precipitação Química , DNA/química , DNA/genética , Células Hep G2 , Humanos , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética
20.
Int J Pharm ; 509(1-2): 314-327, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27260132

RESUMO

The present report describes the synthesis of a hydroxyl terminal PAMAM dendrimer (PAMAM-OH) derivative (PAMSPF). The hydroxyls of PAMAM-OH were attached to S-Methyl-l-cysteine (SMLC) via an acid-labile ester bond, named as ß-thiopropionate bond, followed by modification with folic acid (FA) through a polyethylene glycol (PEG) linker. The degrees of attachment of SMLC and FA to the PAMAM-OH backbone were 83.9% and 12.8%, respectively. PAMSPF could condense DNA to form spherical nanoparticles with particle sizes of ∼200nm and remain stable in the presence of heparin and nuclease. The ß-thiopropionate bond in PAMSPF was hydrolyzed completely and the DNA release rate was 95.8±3.3% after incubation under mildly acidic conditions at 37°C for 3h. PAMSPF/DNA was less cytotoxic to KB and HepG2 cells and exhibited a higher gene transfection efficiency than native PAMAM/DNA. The uptake assays showed that PAMSPF/DNA entered KB cells within 0.5h through folate receptor-mediated endocytosis and escaped from endosomes within 2h. In addition, PAMSPF/DNA displayed long circulation time along with excellent targeting of tumor sites in vivo. These findings demonstrate that PAMSPF is an excellent carrier for safe and effective gene delivery.


Assuntos
Ácidos/química , Cisteína/análogos & derivados , Dendrímeros/química , Animais , Linhagem Celular Tumoral , Cisteína/química , DNA/química , Endocitose/efeitos dos fármacos , Feminino , Ácido Fólico/química , Técnicas de Transferência de Genes , Terapia Genética/métodos , Células Hep G2 , Humanos , Células KB , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA