Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4298-4312, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307767

RESUMO

Chronic obstructive pulmonary disease(COPD) is a progressive lung dysfunction(disease) caused by long-term inhalation of toxic particles, especially smoking. The continued exposure to harmful substances triggers an abnormal inflammatory response, which causes permanent damage to the respiratory system, ultimately leading to irreversible pathological changes. Lung macrophages(LMs) are key innate immune effectors involved in the recognition, phagocytosis, and clearance of pathogens, as well as in the processing of inhaled hazardous particulate matter(e. g., cigarette smoke and particulate matter). LMs are polarized toward the M1 or M2 phenotype in response to the activation of inflammatory mediators to exert pro-/anti-inflammatory effects, respectively, thus being involved in the pulmonary parenchymal damage(emphysema) and repair(airway remodeling) throughout the process of COPD.In addition, they are responsible for phagocytosis and clearance of apoptotic or necrotic tissue cells, which helps to maintain the stability of the microenvironment in the lungs of COPD patients. Modern studies have revealed that macrophage polarization plays a pivotal role in the pathogenesis and development of COPD and is considered a potential target for treating COPD because of its ability to reduce airway inflammation, inhibit tissue remodeling, and combat oxidative stress. In recent years, traditional Chinese medicine(TCM) and its active ingredients have become a hot area in the treatment of COPD by targeting the balance of M1/M2 macrophage polarization. TCM and its active ingredients can intervene in the inflammatory response to promote the repair of the lung tissue in the patients with COPD. This paper reviews the research achievements of TCM and its active ingredients in this field in recent years,aiming to provide a scientific basis and strong support for the precise diagnosis and treatment of COPD.


Assuntos
Medicamentos de Ervas Chinesas , Macrófagos , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Humanos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
2.
Mar Drugs ; 22(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39195461

RESUMO

Pinctada fucata meat is the main by-product of the pearl harvesting industry. It is rich in nutrition, containing a lot of protein and peptides, and holds significant value for both medicine and food. In this study, a new active protein was discovered and expressed heterogeneously through bioinformatics analysis. It was then identified using Western blot, molecular weight, and mass spectrometry. The antibacterial activity, hemolysis activity, antioxidant activity, and Angiotensin-Converting Enzyme II (ACE2) inhibitory activity were investigated. An unknown functional protein was screened through the Uniprot protein database, and its primary structure did not resemble existing proteins. It was an α-helical cationic polypeptide we named PFAP-1. The codon-optimized full-length PFAP-1 gene was synthesized and inserted into the prokaryotic expression vector pET-30a. The induced expression conditions were determined with a final isopropyl-ß-d-thiogalactoside (IPTG) concentration of 0.2 mM, an induction temperature of 15 °C, and an induction time of 16 h. The recombinant PFAP-1 protein, with low endotoxin and sterility, was successfully prepared. The recombinant PFAP-1 protein exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro, and the diameter of the inhibition zone was 15.99 ± 0.02 mm. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 37.5 µg/mL and 150 µg/mL, respectively, and its hemolytic activity was low (11.21%) at the bactericidal concentration. The recombinant PFAP-1 protein significantly inhibited the formation of MRSA biofilm and eradicated MRSA biofilm. It also demonstrated potent 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging activity with a half-maximal inhibitory concentration (IC50) of 40.83 µg/mL. The IC50 of ACE2 inhibition was 5.66 µg/mL. Molecular docking results revealed that the optimal docking fraction of PFAP-1 protein and ACE2 protein was -267.78 kcal/mol, with a confidence level of 0.913. The stable binding complex was primarily formed through nine groups of hydrogen bonds, three groups of salt bridges, and numerous hydrophobic interactions. In conclusion, recombinant PFAP-1 can serve as a promising active protein in food, cosmetics, or medicine.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Pinctada , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Pinctada/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Humanos
3.
ACS Nano ; 18(37): 25647-25656, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39216081

RESUMO

The comprehensive evaluation of tumor vasculature that is crucial for the development, expansion, and spread of cancer still remains a great challenge, especially the three-dimensional (3D) evaluation of vasculatures. In this study, we proposed a magnetic resonance (MR) angiography strategy with interlocking stratagem of zwitterionic Gd-chelate contrast agents (PAA-Gd) for continuous monitoring of tumor angiogenesis progression in 3D. Owing to the zwitterionic structure and nanoscale molecular diameter, the longitudinal molar relaxivity (r1) of PAA-Gd was 2.5 times higher than that of individual Gd-chelates on a 7.0 T MRI scanner, resulting in the higher-resolution visualization of tumor vasculatures. More importantly, PAA-Gd has the appropriate blood half-life (69.2 min), emphasizing the extended imaging window compared to the individual Gd-chelates. On this basis, by using PAA-Gd as the contrast agent, the high-resolution, 3D depiction of the spatiotemporal distribution of microvasculature in solid tumors formed by different cell lines over various inoculation times has been obtained. This method offers an effective approach for early tumor diagnosis, development assessment, and prognosis evaluation.


Assuntos
Meios de Contraste , Gadolínio , Angiografia por Ressonância Magnética , Neovascularização Patológica , Meios de Contraste/química , Angiografia por Ressonância Magnética/métodos , Animais , Gadolínio/química , Camundongos , Humanos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Linhagem Celular Tumoral
4.
Mol Nutr Food Res ; : e2400251, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097954

RESUMO

Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.

5.
Exp Mol Med ; 56(7): 1643-1654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945958

RESUMO

The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares , Senescência Celular , Fibrose Pulmonar , Proteínas de Sinalização YAP , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Epiteliais Alveolares/metabolismo , Bleomicina , Linhagem Celular , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
6.
Fish Shellfish Immunol ; 143: 109215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951320

RESUMO

Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.


Assuntos
Pinctada , Animais , Coelhos , Pinctada/metabolismo , Sequência de Aminoácidos , Filogenia , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Galectinas/genética , Galectinas/metabolismo , Antibacterianos/metabolismo
7.
J Mater Chem B ; 11(36): 8717-8731, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37646819

RESUMO

Chemodynamic therapy as a novel type of chemotherapy can damage the DNA structures and induce cell apoptosis and immunogenic cell death (ICD) through generating reactive oxygen species (ROS) to aggravate oxidative stress. Nonetheless, as an intrinsic antioxidative response of tumor cells, the expression of glutathione (GSH) can be upregulated to maintain the cellular redox balance and protect the tumor cells from ROS-mediated damage. In this context, it is feasible to simultaneously boost ROS generation and GSH depletion in tumor cells; however, the precise delivery and release of GSH scavengers at specific subcellular sites is of great importance. Herein, we propose a GSH-responsive mesoporous organosilica nanoparticle (MON)-based nanomedicine MON-CA-TPP@HA through sequentially covalently attaching triphenylphosphine (TPP) and electrostatically coating hyaluronic acid (HA) onto the surface of cinnamaldehyde (CA)-loaded MONs, known as MON-CA-TPP@HA, which has been demonstrated to be an extremely effective therapeutic strategy for cancer treatment through inducing ICD and apoptosis of breast cancer cells. Systematic in vitro experimental results clearly revealed that the nanomedicine can actively target the tumor cells with the help of HA, subsequently enter the tumor cells, and precisely bind with the mitochondria through TPP residues. Upon cleavaging the disulfide bond in the MONs triggered by over-expressed GSH within tumors, the CA molecules can be released inducing the excessive ROS in situ surrounding the mitochondria to activate oxidative stress to induce apoptosis and ICD of breast cancer cells. The results of the in vivo experiments confirm that the MON-CA-TPP@HA nanomedicine can effectively promote dendritic cell (DC) maturation and CD 8+ T cell activation and regulate the ratio of M1/M2 macrophages, which improve tumor immunosuppressive microenvironment. It is thus believed that the current nanomedicine has paved a new way for future cancer therapy.


Assuntos
Neoplasias da Mama , Imunoterapia , Humanos , Feminino , Espécies Reativas de Oxigênio , Glutationa , Ácido Hialurônico , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral
8.
J Nanobiotechnology ; 21(1): 197, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340418

RESUMO

Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Oncogenes
9.
Ann Rheum Dis ; 82(3): 393-402, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36261249

RESUMO

OBJECTIVES: This study investigated the stage-specific and location-specific deposition and characteristics of minerals in human osteoarthritis (OA) cartilages via multiple nano-analytical technologies. METHODS: Normal and OA cartilages were serially sectioned for micro-CT, scanning electron microscopy with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, focused ion beam scanning electron microscopy, high-resolution electron energy loss spectrometry with transmission electron microscopy, nanoindentation and atomic force microscopy to analyse the structural, compositional and mechanical properties of cartilage in OA progression. RESULTS: We found that OA progressed by both top-down calcification at the joint surface and bottom-up calcification at the osteochondral interface. The top-down calcification process started with spherical mineral particle formation in the joint surface during early-stage OA (OA-E), followed by fibre formation and densely packed material transformation deep into the cartilage during advanced-stage OA (OA-A). The bottom-up calcification in OA-E started when an excessive layer of calcified tissue formed above the original calcified cartilage, exhibiting a calcified sandwich structure. Over time, the original and upper layers of calcified cartilage fused, which thickened the calcified cartilage region and disrupted the cartilage structure. During OA-E, the calcified cartilage was hypermineralised, containing stiffer carbonated hydroxyapatite (HAp). During OA-A, it was hypomineralised and contained softer HAp. This discrepancy may be attributed to matrix vesicle nucleation during OA-E and carbonate cores during OA-A. CONCLUSIONS: This work refines our current understanding of the mechanism underlying OA progression and provides the foothold for potential therapeutic targeting strategies once the location-specific cartilage calcification features in OA are established.


Assuntos
Calcinose , Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Calcinose/etiologia
10.
Exploration (Beijing) ; 3(6): 20230070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38264683

RESUMO

Although the extraordinary progress has been made in molecular biology, the prevention of cancer remains arduous. Most solid tumours exhibit both spatial and temporal heterogeneity, which is difficult to be mimicked in vitro. Additionally, the complex biochemical and immune features of tumour microenvironment significantly affect the tumour development. Molecular imaging aims at the exploitation of tumour-associated molecules as specific targets of customized molecular probe, thereby generating image contrast of tumour markers, and offering opportunities to non-invasively evaluate the pathological characteristics of tumours in vivo. Particularly, there are no "standard markers" as control in clinical imaging diagnosis of individuals, so the tumour pathological characteristics-responsive nanoprobe-based quantitative molecular imaging, which is able to visualize and determine the accurate content values of heterogeneous distribution of pathological molecules in solid tumours, can provide criteria for cancer diagnosis. In this context, a variety of "smart" quantitative molecular imaging nanoprobes have been designed, in order to provide feasible approaches to quantitatively visualize the tumour-associated pathological molecules in vivo. This review summarizes the recent achievements in the designs of these nanoprobes, and highlights the state-of-the-art technologies in quantitative imaging of tumour-associated pathological molecules.

11.
J Periodontal Res ; 57(5): 969-976, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35848007

RESUMO

OBJECTIVE: The aim of this study was to investigate the association between periodontitis and total serum cholesterol level in patients with type 2 diabetic nephropathy (T2DN). BACKGROUND: Periodontitis is now recognized as the sixth complication of diabetes and can also affect other complications of diabetes, including nephropathy and coronary artery diseases. Studies have considered dyslipidemia as a risk factor for exacerbation of periodontitis. METHODS: A total of 119 T2DN patients with chronic periodontitis were included in this observational study. Participants were stratified into the Normal (serum total cholesterol <5.17 mmol/L, n = 89) and the Dyslipidemia groups (serum total cholesterol ≥5.17 mmol/L, n = 30). Participants completed a validated questionnaire that collected information on oral hygiene behaviors and knowledge of oral health and underwent a clinical oral examination. The number of remaining teeth, probing depth (PD), clinical attachment level (CAL), and bleeding index (BI) was recorded. Physical examination and laboratory tests (fasting plasma glucose, serum glycosylated hemoglobin (HbA1c), total cholesterol, high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), triglyceride, and high-sensitivity C-reactive protein levels) were performed. RESULTS: Means of CAL and BI were significantly higher in the Dyslipidemia group compared with the Normal group. In the Dyslipidemia group, PD and percent of sites with PD ≥4 mm were positively correlated with urinary albumin/creatinine ratios; PD and percent of sites with PD ≥4 and PD ≥5 mm were positively correlated with HbA1c level; a number of remaining teeth were negatively correlated with serum LDL-C level. After adjusting for age, gender, body mass index, smoking, FPG, and serum HbA1c and triglyceride levels, BI was found to be positively associated with dyslipidemia in T2DN patients with periodontitis. CONCLUSION: T2DN patients with chronic periodontitis had a 2.355-fold higher risk of developing dyslipidemia, implying an important relationship between periodontitis and blood lipid control among T2DN patients.


Assuntos
Periodontite Crônica , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Dislipidemias , LDL-Colesterol , Periodontite Crônica/complicações , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/complicações , Dislipidemias/complicações , Hemoglobinas Glicadas/análise , Humanos , Triglicerídeos
12.
iScience ; 25(7): 104619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789848

RESUMO

Full-thickness wounds, lacking the epidermis and entire dermis and extending into subcutaneous fat, represent a common treatment challenge. Due to the loss of adnexal structures as a source of keratinocytes, full-thickness wounds healing can only be achieved by re-epithelialization from the wound edge and contraction. Here, we developed a hydrogel composed of chitosan methacrylate (CSMA) and o-nitrosobenzaldehyde-modified gelatin (GelNB) for promoting full-thickness wound healing. The CSMA/GelNB (CM/GN) hydrogels exhibited superior mechanical and adhesive properties than that of pure CSMA hydrogel. In vivo experiments confirmed that CM/GN could promote wound healing by generating more hair follicles and mutual blood vessels, high fibroblasts density, and thicker granulation tissue thickness. In addition, reduced secretions of tumor necrosis factor-α (TNF-α) and enhanced secretions of vascular endothelial growth factor (VEGF) could be observed in regenerated tissues after CM/GN treatment. These results suggested that CM/GN hydrogels could be promising candidates to promote wound healing.

16.
Int J Pharm ; 615: 121493, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065209

RESUMO

Sustained and localized delivery of chemotherapeutics in postoperative cancer treatment leads to a radical improvement in prognosis and a much decreased risk of tumor recurrence. In this work, polydopamine (PDA)-coated superparamagnetic iron oxide nanoparticle (SPION)-loaded polycaprolactone and poly(lactic-co-glycolic acid) fibers were developed as a potential implant to ensure safe and sustained release of the chemotherapeutic drug methotrexate (MTX), as well as provide local contrast for magnetic resonance imaging (MRI). Fibres were prepared by co-axial electrospinning and loaded with MTX-layered double hydroxide (LDH) nanocomposites in the core, yielding organic-inorganic hybrids ranging from 1.23 to 1.48 µm in diameter. After surface coating with PDA, SPIONs were subsequently loaded on the fibre surface and found to be evenly distributed, providing high MRI contrast. In vitro drug release studies showed the PDA coated fibres gave sustained release of MTX over 18 days, and the release profile is responsive to conditions representative of the tumor microenvironment such as slightly acidic pH values or elevated concentrations of the reducing agent glutathione (GSH). In vitro studies with Caco-2 and A549 cells showed highly effective killing with the PDA coated formulations, which was further enhanced at higher levels of GSH. The fibres hence have the potential to act as an implantable drug-eluting platform for the sustained release of cytotoxic agents within a tumor site, providing a novel treatment option for post-operative cancer patients.


Assuntos
Nanocompostos , Medicina de Precisão , Células CACO-2 , Humanos , Indóis , Imageamento por Ressonância Magnética , Polímeros , Nanomedicina Teranóstica
17.
J Cell Mol Med ; 24(17): 9545-9559, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32722882

RESUMO

RNF4, a poly-SUMO-specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress-induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2 O2 /ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML-NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2 O2 /ATO-induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno-associated virus infection deteriorated post-MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia-induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.


Assuntos
Apoptose/genética , Isquemia/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Fibrose/genética , Masculino , Camundongos , Infarto do Miocárdio/genética , Estresse Oxidativo/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Sumoilação/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
18.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(3): 308-313, 2020 Jun 01.
Artigo em Chinês | MEDLINE | ID: mdl-32573140

RESUMO

OBJECTIVE: This study aims to explore factors affecting the dental aesthetic social psychology of patients with skeletal malocclusion and to measure the relationship between the objective orthodontic requirements and the subjective treatment requirements of patients. This work provides a reference for doctors to measure patients' orthodontic treatment needs. METHODS: Adult patients with skeletal malocclusion were chosen as the research object. Questionnaire survey was used to analyze factors influencing the psychosocial impact of dental aesthetics questionnaire (PIDAQ), index of orthodontic treatment need (IOTN), and Eysenck personality questionnaire-revised short scale for Chinese (EPQ-RSC). The relationship among PIDAQ, IOTN, EPQ-RSC, and treatment options was also evaluated. RESULTS: Seventy-two valid questionnaires were collected from adult patients with skeletal malocclusion. 1) The PIDAQ scores significantly differed among different occupations (P<0.05) but were not affected by other general conditions such as gender and age. 2) Patients of different dental health component (DHC) grade and ages had different AC self-assessment scores (P<0.01, P<0.05). The AC self-assessment score was positively correlated with the PIDAQ score (P<0.05). 3) Males accounted for a higher proportion of patients who received treatment. Younger patients (18-28 years old) were more likely to receive treat-ment when their own dental aesthetics were poor. People with the higher monthly expenditure accounted for the larger proportion of surgical patients. 4) The PIDAQ score had no significant effects on the choice of opera-tion (P>0.05). People with low educational level were more likely to receive surgery if their psychosocial impacts of dental aes-thetics were serious. 5) The score of psychoticism scale of EPQ-RSC and the educa-tional level had a mutual influence on the PIDAQ score (P<0.01). Moreover, the neuroticism scale and AC self-assessment scores had a mutual influence on the PIDAQ score (P<0.05). However, this study did not find a correlation between personality traits and treatment options. CONCLUSIONS: Many factors, such as personal natural conditions, subjective aesthetic evaluation of teeth, and psychosocial impacts of dental aesthetics, affect patients' treatment options. Personality characteristics can play a certain role in dental aesthetics social psychology.


Assuntos
Estética Dentária , Má Oclusão , Adolescente , Adulto , Humanos , Índice de Necessidade de Tratamento Ortodôntico , Masculino , Psicologia Social , Qualidade de Vida , Autoimagem , Inquéritos e Questionários , Adulto Jovem
19.
Biol Open ; 9(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32014885

RESUMO

Recently, microRNA-96-5p (miR-96-5p) has been reported to function as both a tumor suppressor and oncogene in several cancer types, including gastric cancer, hepatocellular cancer and lung cancer. However, the biological function of miR-96-5p and its precise mechanisms in oral squamous cell carcinoma (OSCC) have not been well clarified. The aim of this study was to study the roles of miR-96-5p/FOXF2 axis in OSCC. In this study, the miR-96-5p level was dramatically enhanced in OSCC tissues and cell lines, and the FOXF2 expression was significantly reduced. In addition, the FOXF2 expression was negatively related to the miR-96-5p level in OSCC tissues. Furthermore, downregulation of miR-96-5p obviously restrained OSCC cell proliferation, invasion and EMT. We confirmed that miR-96-5p could directly target FOXF2 by luciferase reporter assay. Moreover, knockdown of FOXF2 also could markedly promote the proliferation, invasion and EMT of OSCC cells. Finally, overexpression of FOXF2 in OSCC cells partially reversed the promoted effects of miR-96-5p mimic. Knockdown of miR-96-5p restrained OSCC cells proliferation, invasion and EMT via regulation of FOXF2.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Humanos , Neoplasias Bucais/genética , Transfecção
20.
Wei Sheng Yan Jiu ; 48(6): 970-975, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31875824

RESUMO

OBJECTIVE: To inquiry the effects of cigarette smoke extract(CSE) on RAW264. 7 cell proliferation, autophagy and its mechanism. METHODS: RAW264. 7 cell were used and divided into control, starvation and CSE group(2%, 3%, 4%, 5%CSE). CCK-8 was used to detect the toxic action of CSE on RAW264. 7 cell. Western blot and mRFP-GFP-LC3 cell fluorescence spot count were used to explore the function of CSE on RAW264. 7 cell autophagy and its mechanism. RESULTS: Compared with the control group, the result of CCK-8(0. 671 ± 0. 03、0. 746± 0. 10、0. 584 ± 0. 07、0. 588±0. 05) showed that CSE inhibit the proliferation of RAW 264. 7 cell on 24 hours, the difference was statistically significant(P < 0. 05). The outcomes of Western blot showed that, compared with the control group, LC3 B in the CSE group increased, difference in 6(6. 612 ± 0. 35)/12(4. 383 ± 1. 99)/24(5. 781 ± 0. 78) hours, while P62 decreased in 6(1. 815±0. 08)/12(4. 383±1. 99)/24(0. 414±0. 06) hours also different, P-mTOR(1. 744 ± 0. 15) and P-AKT(0. 376 ± 0. 03) decreased, the difference was statistically significant(P<0. 05), but Beclin1 was not significantly changed. The mRFP-GFP-LC3 cell fluorescence spot count showed that the green fluorescence spot(GFP)decreased and the red fluorescence spot(mRFP) remained stable in CSE group, combined mRFP-GFP is shown as yellow and red spots. CONCLUSION: CSE has toxic effect on cell proliferation and leads to RAW264. 7 cell autophagy enhanced through AKT/m TOR pathways.


Assuntos
Autofagia , Fumar , Proliferação de Células , Extratos Vegetais , Fumaça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA