Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
ACS Nano ; 18(12): 9176-9186, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38497601

RESUMO

Immunotherapy plays a vital role in cancer postoperative treatment. Strategies to increase the variety of immune cells and their sustainable supply are essential to improve the therapeutic effect of immune cell-based immunotherapy. Here, inspired by tertiary lymphoid structures (TLSs), we present a microfluidic-assisted microporous annealed particle (MAP) scaffold for the persistent recruitment of diverse immune cells for cancer postoperative therapy. Based on the thermochemical responsivity of gelatin methacryloyl (GelMA), the MAP scaffold was fabricated by physical cross-linking and sequential photo-cross-linking of GelMA droplets, which were prepared by microfluidic electrospraying. Due to the encapsulation of liquid nitrogen-inactivated tumor cells and immunostimulant, the generated MAP scaffold could recruit a large number of immune cells, involving T cells, macrophages, dendritic cells, B cells, and natural killer cells, thereby forming the biomimetic TLSs in vivo. In addition, by combination of immune checkpoint inhibitors, a synergistic anticancer immune response was provoked to inhibit tumor recurrence and metastasis. These properties make the proposed MAP scaffold-based artificial TLSs of great value for efficient cancer postoperative therapy.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Biomimética , Imunoterapia , Adjuvantes Imunológicos , Linfócitos B , Neoplasias/tratamento farmacológico , Neoplasias/cirurgia
2.
Food Funct ; 15(7): 3629-3639, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482590

RESUMO

Inflammation and oxidative stress contribute to noncommunicable diseases (NCDs), with macrophages playing pivotal roles. Glycated collagen through Maillard-type glycation holds promise for enhancing anti-inflammatory properties, but its mechanism remains unclear. This study investigates the cellular mechanism and aims to contribute to expanding collagen utilization. Collagen was glycated with alginate oligosaccharide (AO) and glucose (Glc: as a comparative case) at 60 °C and 35% relative humidity for up to 24 h (C-AO and C-Glc, respectively). The anti-inflammatory activities of both C-AO and C-Glc were evaluated using an LPS-stimulated macrophage model. 18 h AO-glycated collagen (C-AO18 h) was found to significantly reduce the production of nitric oxide and proinflammatory cytokines (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß). In contrast, C-Glc did not exhibit enhanced anti-inflammatory activity during any of the glycation periods. The enhanced anti-inflammatory activity of C-AO18 h was attributed to its downregulating effect on LPS receptors (toll-like receptor 4, Tlr4; cluster of differentiation 14, Cd14) and myeloid differentiation primary response 88 (Myd88) mRNA expression, with suppression in receptor expression resulting in decreased phagocytic ability of macrophages against E. coli. In addition, compared with intact collagen, C-AO18 h exhibited improved antioxidant activity in the LPS-stimulated macrophage model, as it significantly upregulated superoxide dismutase (SOD) and catalase (CAT) activities while reducing malondialdehyde (MDA) levels. Overall, this study contributes to the development of collagen-based functional foods for mitigating inflammation and oxidative stress in NCDs.


Assuntos
Alginatos , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Alginatos/farmacologia , Alginatos/uso terapêutico , Escherichia coli/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia
3.
Adv Healthc Mater ; 13(4): e2302588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948613

RESUMO

Wound healing remains a critical challenge in regenerative engineering. Great efforts are devoted to develop functional patches for wound healing. Herein, a novel sprayable black phosphorus (BP)-based multifunctional hydrogel with on-demand removability is presented as a joints' skin wound dressing. The hydrogel is facilely prepared by mixing dopamine-modified oxidized hyaluronic acid, cyanoacetategroup-functionalized dextran containing black phosphorus, and the catalyst histidine. The catechol-containing dopamine can not only enhance tissue adhesiveness, but also endow the hydrogel with antioxidant capacity. In addition, benefiting from the photothermal conversion ability of the BP and thermally reversible performance of the formed C═C double bonds between aldehyde groups and cyanoacetate groups, the resulting hydrogel displays excellent antibacterial performance and on-demand dissolving ability under NIR irradiation. Moreover, by loading vascular endothelial growth factor into the hydrogel, the promoted migration and angiogenesis effects of endothelial cells can also be achieved. Based on these features, it is demonstrated that such sprayable BP hydrogels can effectively facilitate joint wounds healing by accelerating angiogenesis, alleviating inflammation, and improving wound microenvironment. Thus, it is believed that this NIR-responsive removable BP hydrogel dressing will put forward an innovative concept in designing wound dressings.


Assuntos
Dopamina , Hidrogéis , Hidrogéis/farmacologia , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Aldeídos , Antibacterianos/farmacologia
4.
Small Methods ; : e2301002, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127997

RESUMO

Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.

5.
Adv Sci (Weinh) ; 10(25): e2301479, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376818

RESUMO

Many hydrogel patches are developed to solve the pervasive and severe challenge of complex wound healing, while most of them still lack satisfactory controllability and comprehensive functionality. Herein, inspired by multiple creatures, including octopuses and snails, a novel muti-functional hydrogel patch is presented with controlled adhesion, antibacterial, drug release features, and multiple monitoring functions for intelligent wound healing management. The patch with micro suction-cup actuator array and a tensile backing layer is composed of tannin grafted gelatin, Ag-tannin nanoparticles, polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (PNIPAm). In virtue of the photothermal gel-sol transition of tannin grafted gelatin and Ag-tannin nanoparticles, the patches exert a dual anti-microbial effect and temperature-sensitive snail mucus-like features. In addition, as the "suction-cups" consisting of thermal responsive PNIPAm can undergo a contract-relax transformation, the medical patches can adhere to the objects reversibly and responsively, and release their loaded vascular endothelial growth factor (VEGF) controllably for wound healing. More attractively, benefiting from their fatigue resistance, self-healing ability of the tensile double network hydrogel, and electrical conductivity of Ag-tannin nanoparticles, the proposed patches can report multiple wound physiology parameters sensitively and continuously. Thus, it is believed that this multi-bioinspired patch has immense potential for future wound healing management.


Assuntos
Gelatina , Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Condutividade Elétrica
6.
Nanomicro Lett ; 15(1): 44, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752939

RESUMO

Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.

7.
Food Chem ; 407: 135162, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525806

RESUMO

The role of carboxyl group in uronic acid in enhancing the anti-inflammatory activity of fish myofibrillar protein (Mf) was investigated, when lyophilized Mf was reacted with various reducing sugars at 60 °C and 35% relative humidity through the Maillard reaction. After pepsin and trypsin digestion, the anti-inflammatory activity was evaluated by measuring the secretions of tumor necrosis factor-α, interleukin-6, interleukin-1ß, and nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophage. The anti-inflammatory activity of Mf was not affected by glycation with glucose or galactose, whereas strongly enhanced by glycation with uronic acid-type reducing sugars: glucuronic acid, galacturonic acid, and alginate oligosaccharide. These results indicate that the presence of carboxyl group in reducing sugar is important for enhancing the anti-inflammatory activity of Mf. This study also shows that the enhanced effect could depend upon the number of carboxyl group in bound reducing sugar.


Assuntos
Reação de Maillard , Açúcares , Animais , Ácidos Urônicos , Oligossacarídeos , Anti-Inflamatórios/farmacologia
8.
J Gastrointest Oncol ; 13(3): 923-934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35837153

RESUMO

Background: The J wave syndromes (JWS) could be observed in patients with mediastinal tumors, though few studies have verified the statistical correlation between J waves and cardiac compression by tumors. This study aimed to investigate the relationship between J waves and cardiac compression by esophageal tumor and to compare the prediction of J waves on clinical prognosis with that of cardiac compression by esophageal tumor. Methods: We enrolled 273 patients (228 males, 45 females; mean 63.8±7.5 years) with esophageal tumors admitted to Shanghai Chest Hospital between August 2016 and November 2020. The J wave was defined as a J-point elevation of ≥0.1 mV in a 12-lead electrocardiogram (ECG) and classified into multiple types. Chest computed tomography (CT) was reviewed to clarify the anatomical relationship between the heart and the esophageal tumor. The prognosis of severe cardiac events and survival status were followed up through medical history, examination records and telephone records. Results: J waves were present in 141 patients among all 273 cases. The sensitivity and specificity of cardiac compression by the tumor for J waves were 78.1% and 67.3%, respectively. The odds ratio (OR) of cardiac compression by the tumor to J waves was 7.33 [95% confidence interval (CI): 4.21-12.74; P<0.001]. The Kappa coefficient between J waves and cardiac compression was 0.44±0.05. The significance association between J waves and cardiac compression was independent from other clinical variables (P<0.001). Decreased J wave amplitude was correlated with the disappearance of cardiac compression during follow-up (P=0.03). Patients with J waves had a higher risk of severe cardiac events than those without J waves (OR =2.84, 95% CI: 1.22-6.63; P=0.01). During the follow-up period, we found that the presence of J waves [hazard ratio (HR) =2.28; 95% CI: 1.35-3.84; P=0.002] and cardiac compression by the tumor (HR =2.51; 95% CI: 1.51-4.17; P<0.001) were both negatively correlated with the survival time of patients. Conclusions: The presence of J waves could be used as an effective mean to predict the mechanical impact of esophageal tumor on the heart, and played an important role in predicting the survival of patients.

9.
3 Biotech ; 11(7): 320, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34194904

RESUMO

Nisin is an antimicrobial peptide which is widely used as preservative, while lactic acid is a natural organic acid applied in the food industry. The aim of this work was to study the process for nisin and lactic acid production from starch of sweet potato with simultaneous saccharification and fermentation (SSF) by Lactococcus lactis subsp. Lactis with two stage pH adjustment. The factors impacting the nisin and lactic acid production including starch concentration, glucosidase concentration, CaCO3 and Tween-80 were studied. The nisin titre reached a high of 2516.41 IU/mL, while the lactic acid reached a high of 37.06 g/L when the optimal conditions were 40 g/L starch, 100 U glucosidase/g starch, 2.5% CaCO3 and 1 mL/L Tween-80. The lactic acid and nisin were separated by a two stage pH adjustment at last. The SSF of starch from sweet potato coupled with a two stage pH adjustment is a promising method to produce nisin and lactic acid.

10.
Adv Sci (Weinh) ; 8(17): e2100201, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196481

RESUMO

Medical patches play an important role in wound healing because of their tissue conformality, drug release capacity, and convenient operation. Great efforts have been devoted to developing new-generation patches with distinctive features promoting wound healing. Here, inspired by the structure of octopus suction cups and the component of natural tissue, a biocompatible wound patch with selective adhesiveness and individualized design using a combined strategy of template-replication and mask-guided lithography is presented. Such patches are based on Ecoflex film with suction-cup-mimicking microstructures to adhere to normal skin and with biocompatible gelatin methacryloyl (GelMA) hydrogel to contact wounded areas. An ultraviolet mask with a tailorable pattern is employed to shape the GelMA hydrogel into customized geometry replicating individual wound areas, and thus both adhesion and antiadhesion properties are integrated into the same patch. In addition, vascular endothelial growth factor is loaded to accelerate the healing process. Based on these advantages, the authors demonstrate that the present patches not only adhere to different skin surfaces, but also promote the treatment of a rat cutaneous wound model. Thus, it is believed that this versatile patch can break through the limitation of traditional patches and be ideal candidates for wound healing and related biomedical applications.


Assuntos
Adesivos , Gelatina , Metacrilatos , Adesivo Transdérmico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Cicatrização , Animais , Materiais Biocompatíveis/administração & dosagem , Desenho de Equipamento , Hidrogéis , Modelos Animais , Ratos , Ratos Sprague-Dawley , Sucção
11.
World J Clin Cases ; 9(16): 3979-3987, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34141756

RESUMO

BACKGROUND: Obturator dislocation is a rare type of hip dislocation, accounting for about 2%-5% of all hip dislocations. The occurrence of old unreduced obturator dislocation is even more infrequent, with only 17 cases reported in nine studies, most of which were from the 1950s to 1980s in developing countries. CASE SUMMARY: A 38-year-old woman from Hunan Province, China presented with stiffness of the left hip in abduction, flexion, and external rotation after falling from a 2-meter-tall tree onto her left knee 1.5 mo prior. Pelvic radiograph and computed tomography revealed obturator dislocation of the left hip accompanied by impaction fracture at the superolateral aspect of the left femoral head without associated acetabulum fracture. Open reduction was performed, resulting in restoration of the concentric alignment of the left hip. After surgery, 6-wk skin traction was applied and the patient was kept in bed for an additional 2 wk. At 3 mo after surgery, the patient reported experiencing some pain, which did not affect the function of the affected limb, and some movement restriction but no abduction deformity or claudication was present. An X-ray showed that the left hip was homocentric, and there was no sign of posttraumatic arthritis or avascular necrosis. CONCLUSION: Open reduction may be an effective treatment strategy for the rare condition of old unreduced obturator dislocation with short neglect time.

12.
Mol Oncol ; 14(10): 2678-2695, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634265

RESUMO

The prognosis for osteosarcoma (OS) is dismal due to the aggressive tumor growth and high incidence of metastasis. The long noncoding RNA human homeobox A transcript at the distal tip (HOTTIP) and the transcription factor forkhead box C1 (FOXC1) present oncogenic activities in OS. Here, we aimed at gaining insights into the underlying mechanisms and their crosstalk. The expression of FOXC1 and HOTTIP in OS tissues or cell lines was examined by real-time PCR (RT-PCR) and western blot. The in vitro effects of FOXC1 or HOTTIP on cell viability, proliferation, migration, invasion, and expression of target genes were examined using MTT, colony-forming assay, wound-healing, Transwell invasion, and western blot, respectively; the in vivo effects were examined using xenograft and experimental metastasis models. Molecular control of HOTTIP on large tumor suppressor 2 (LATS2) or transactivation of FOXC1 or Sp1 on HOTTIP was assessed by combining RNA immunoprecipitation, qRT-PCR, western blot, ChIP, and luciferase assay. Both FOXC1 and HOTTIP were potently up-regulated in OS tissues and cell lines. FOXC1 and HOTTIP essentially maintained viability, proliferation, migration, and invasion of OS cells in vitro and contributed to xenograft growth or lung metastasis in vivo. Mechanistically, HOTTIP recruited enhancer of zeste homolog 2 (EZH2) and lysine-specific demethylase 1 (LSD1) to silence LATS2 and thus activated YAP/ß-catenin signaling. Upstream, Sp1 activated FOXC1 and they both directly transactivated HOTTIP. In summary, we showed that the Sp1/FOXC1/HOTTIP/LATS2/YAP/ß-catenin cascade presented oncogenic activities in OS cells. Targeting FOXC1 or HOTTIP may therefore prove beneficial for OS treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Progressão da Doença , Fatores de Transcrição Forkhead/metabolismo , Osteossarcoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Transcrição Gênica , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
13.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32453410

RESUMO

Osteosarcoma is a malignant bone tumour with the lowest survival rates out of all paediatric cancers and is primarily diagnosed in children and adolescents. MNAT1 is a subunit in the cyclin-dependent kinase-activating kinase complex. Abnormal up-regulation of MNAT1 has been associated with the poor prognosis of multiple cancers. Bioinformatics analysis showed that has-circ-0001146 and miR-26a-5p were involved in the regulation of MNAT1 in osteosarcoma. The present study investigated the regulatory effects of has-circ-0001146 and miR-26a-5p on MNAT1 expression using luciferase reporter and RNA-pull down assays. The effects of the has-circ-0001146/miR26a-5p/Mnat1 network on the proliferation and invasion of osteosarcoma were evaluated by cell viability, apoptosis, migration, and invasion assays. Osteosarcoma tissues showed higher MNAT1 and has-circ-0001146 expression than adjacent normal tissues, although the expression of MNAT1 was not significantly up-regulated in sarcomas according to TCGA databases. As indicated by luciferase reporter and RNA-pull down assays, miR-26a-5p was able to bind to both has-circ-0001146 and MNAT1 mRNA. The depletion of has-circ-0001146 as well as the increase of miR-26a-5p decreased MNAT1 expression in osteosarcoma cells, while the reduction of miR-26a-5p was associated with increased MNAT1 expression. These data suggested that has-circ-0001146 promoted MNAT1 expression by competitively binding to miR-26a-5p with MNAT1 mRNA. The depletion of has-circ-0001146 or MNAT1 or the increase of miR-26a-5p inhibited osteosarcoma cell viability and invasion, and increased apoptosis. Reduction of miR-26a-5p conversely promoted osteosarcoma cell viability and invasion. The present study confirmed that has-circ-0001146 blocked miR-26a-5p targeting MNAT1 in osteosarcoma cells, thereby promoting the malignant behaviours of osteosarcoma cells.


Assuntos
Neoplasias Ósseas/metabolismo , Proteínas de Ciclo Celular/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , RNA Circular/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Circular/genética , Transdução de Sinais , Fatores de Transcrição/genética , Carga Tumoral , Adulto Jovem
14.
Cell Metab ; 31(1): 148-161.e5, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31761565

RESUMO

Although obesity is known to be critical for cancer development, how obesity negatively impacts antitumor immune responses remains largely unknown. Here, we show that increased fatty acid oxidation (FAO) driven by activated STAT3 in CD8+ T effector cells is critical for obesity-associated breast tumor progression. Ablating T cell Stat3 or treatment with an FAO inhibitor in obese mice spontaneously developing breast tumor reduces FAO, increases glycolysis and CD8+ T effector cell functions, leading to inhibition of breast tumor development. Moreover, PD-1 ligation in CD8+ T cells activates STAT3 to increase FAO, inhibiting CD8+ T effector cell glycolysis and functions. Finally, leptin enriched in mammary adipocytes and fat tissues downregulates CD8+ T cell effector functions through activating STAT3-FAO and inhibiting glycolysis. We identify a critical role of increased oxidation of fatty acids driven by leptin and PD-1 through STAT3 in inhibiting CD8+ T effector cell glycolysis and in promoting obesity-associated breast tumorigenesis.


Assuntos
Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Ácidos Graxos/metabolismo , Obesidade/metabolismo , Fator de Transcrição STAT3/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Feminino , Glicólise/genética , Glicólise/fisiologia , Humanos , Interferon gama/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/imunologia , Oxirredução/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Fator de Transcrição STAT3/genética
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(7): 757-766, 2019 Jul 28.
Artigo em Chinês | MEDLINE | ID: mdl-31413213

RESUMO

OBJECTIVE: To investigate the effect of miR-30a/HMGA2-mediated autophagy in osteosarcoma cells on apoptosis induced by chemotherapeutics. 
 Methods: A total of 30 osteosarcoma tissues of sensitive and resistant to chemotherapeutics were divided into a chemotherapy-sensitive group and a chemotherapy-resistant group. The mRNA expression levels of miR-30a and high mobility group protein A2 (HMGA2) in the chemotherapy-sensitive group and the chemotherapy-resistant group, and the mRNA expression levels of miR-30a in osteosarcoma U2-OS cells treated by cisplatin, doxorubicin and methotrexate at different concentrations were detected by real-time PCR. The expression levels of autophagy related protein Beclin 1, microtubule associated protein 1 light chain 3B (LC3B) and autophagy factor P62 were detected by Western blotting. The osteosarcoma U2-OS cells were transfected with miR-30a mimics and miR-30a inhibitors to construct a miR-30a high expression group, a miR-30a low expression group and a control group. The expression levels of Beclin 1, LC3B and P62 in osteosarcoma U2-OS cells after treatment of cisplatin and doxorubicin in these 3 groups were detected by Western blotting; the level of autophagy was detected by monodansylcada (MDC) staining; the level of ROS was detected by dihydroethidium (DHE); the level of cell surviving rate was detected by cell counting kit-8 (CCK-8); the level of apoptosis was detected by annexin APC/PI double staining; the level of mitochondria oxidative damage was detected by mitochondrial membrane potential assay kit with JC-1 (JC-1 method). The interaction between miR-30a and HMGA2 was detected by dual luciferase reporter assay. The osteosarcoma U2-OS cells were transfected with HMGA2 mimics and HMGA2-shRNA to construct a high HMGA2 group, a low HMGA2 group, and a control group. The expression levels of Beclin 1, LC3B and P62 in osteosarcoma U2-OS cells after the treatment of cisplatin were detected by Western blotting.
 Results: The level of miR-30a in the chemotherapy-resistant tissues was significantly lower than that in the chemotherapy-sensitive tissues (P<0.05), and the expression of HMGA2 was opposite comparing to that of miR-30a (P<0.05). After the treatment by low concentration (5 µmol/L) of chemotherapeutics, the level of miR-30a was down-regulated in osteosarcoma U2-OS cells, accompanied with up-regulation of Beclin 1 and LC3B (P<0.01) and down-regulation of P62 (P<0.01). Compared with the control group, the expression levels of Beclin 1 and LC3B were significantly decreased (P<0.05), and the expression level of P62 was significantly increased (P<0.05) in the miR-30a high expression group, which was opposite in the miR-30a low expression group. In the miR-30a high expression group treated by chemotherapeutics, the level of autophagy and the cell survival rate were lower than those in group with low expression of miR-30a, while the levels of ROS, the mitochondrial oxidative damage and the apoptosis were higher than those in group with low expression of miR-30a (all P<0.05). The targeting interaction between HMGA2 and miR-30a were verified by dual luciferase reporter assay. Compared with the control group, the expression levels of Beclin 1 and LC3B were significantly increased (P<0.05), and the expression level of P62 was significantly decreased (P<0.05) in the HMGA2 high expression group, which was opposite in the HMGA2 low expression group.
 Conclusion: Suppression of miR-30a/HMGA2-mediated autophagy in osteosarcoma cells is likely to enhance the therapeutic effect of chemotherapeutics.


Assuntos
Autofagia , Neoplasias Ósseas , Proteína HMGA2/metabolismo , MicroRNAs/genética , Osteossarcoma , Apoptose , Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Linhagem Celular Tumoral , Humanos
17.
Life Sci ; 234: 116771, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421084

RESUMO

AIMS: We aimed to elucidate the effects and mechanisms of MAT1 in the progression of osteosarcoma, especially for its lung metastasis. MAIN METHODS: CCK-8 and flow cytometry assays were carried out to detect the proliferation and apoptosis of osteosarcoma cells. Wound healing and transwell assays were used to determine cell migration and invasion abilities. Real time quantitative PCR (RT-PCR) and western blot technologies were applied to detect the expression levels of RNA and protein, respectively. KEY FINDS: The results showed that both the mRNA and protein expression levels of MAT1 were elevated in osteosarcoma tissues with lung metastasis and metastatic lung tissues, particularly in the metastatic lung tissues, as compared to the osteosarcoma tissues without lung metastasis. High expression level of MAT1 in osteosarcoma patients showed a negative association with the overall survival. In addition, upregulation of MAT1 induced significant increases in cell growth, migration and invasion and an obvious inhibition in cell apoptosis in osteosarcoma MG63 and 143B cells, as well as elevated AKT1 expression level. Moreover, knockdown of AKT1 obviously impaired MAT1-mediated promotions in cell migration and invasion in vitro, as well as repressed tumor growth and reduced the number of metastatic lung tumors in xenografted nude mice. SIGNIFICANCE: This study reveals that high expression of MAT1 closely related to the poor prognosis and malignant clinical process of osteosarcoma patients. MAT1 serves as a promoter in the lung metastasis of osteosarcoma through increasing AKT1 expression. Our study may provide a potent therapeutic target for the lung metastasis of osteosarcoma.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Adulto , Animais , Neoplasias Ósseas/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/genética , Fatores de Transcrição , Regulação para Cima , Adulto Jovem
18.
J Biol Chem ; 293(17): 6556-6564, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29511085

RESUMO

Sal-like 4 (SALL4) is a transcription factor that enhances proliferation and migration in breast cancer cells. SALL4 expression therefore has the potential to promote cancer malignancy. However, the regulatory mechanisms involved in SALL4 protein expression have not been thoroughly elucidated. In this study, we observed that treating MCF-7 and SUM159 breast cancer cell lines with a proteasome inhibitor increases SALL4 protein levels, suggesting that SALL4 is degraded by the ubiquitin-proteasome system. Using immunoprecipitation to uncover SALL4-binding proteins, we identified an E3 ubiquitin-protein ligase, tripartite motif-containing 21 (TRIM21). Using an EGFP reporter probe of the major SALL4 isoform SALL4B, we observed that shRNA-mediated knockdown of TRIM21 increases cellular SALL4B levels. Immunostaining experiments revealed that TRIM21 localizes to the nucleus, and a K64R substitution in the nuclear localization motif in SALL4B increased SALL4B levels in the cytoplasm. These results suggested that TRIM21 is involved in nuclear SALL4 degradation. To identify the amino acid residue that is targeted by TRIM21, we fragmented the SALL4B sequence, fused it to EGFP, and identified Lys-190 in SALL4B as TRIM21's target residue. Amino acid sequence alignments of SALL family members indicated that the region around SALL4 Lys-190 is conserved in both SALL1 and SALL3. Because SALL1 and SALL4 have similar functions, we constructed a SALL1-EGFP probe and found that the TRIM21 knockdown increases SALL1 levels, indicating that TRIM21 degrades both SALL1 and SALL4. Our findings extend our understanding of SALL4 and SALL1 regulation and may contribute to the development of SALL4-targeting therapies.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteólise , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/biossíntese , Neoplasias da Mama/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Ribonucleoproteínas/genética , Fatores de Transcrição/genética
19.
Mol Cancer Ther ; 16(11): 2516-2527, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28716816

RESUMO

Drug resistance is a major barrier for the development of effective and durable cancer therapies. Overcoming this challenge requires further defining the cellular and molecular mechanisms underlying drug resistance, both acquired and environment-mediated drug resistance (EMDR). Here, using neuroblastoma (NB), a childhood cancer with high incidence of recurrence due to resistance to chemotherapy, as a model we show that human bone marrow-mesenchymal stromal cells induce tumor expression of sphingosine-1-phosphate receptor-1 (S1PR1), leading to their resistance to chemotherapy. Targeting S1PR1 by shRNA markedly enhances etoposide-induced apoptosis in NB cells and abrogates EMDR, while overexpression of S1PR1 significantly protects NB cells from multidrug-induced apoptosis via activating JAK-STAT3 signaling. Elevated S1PR1 expression and STAT3 activation are also observed in human NB cells with acquired resistance to etoposide. We show in vitro and in human NB xenograft models that treatment with FTY720, an FDA-approved drug and antagonist of S1PR1, dramatically sensitizes drug-resistant cells to etoposide. In summary, we identify S1PR1 as a critical target for reducing both EMDR and acquired chemoresistance in NB. Mol Cancer Ther; 16(11); 2516-27. ©2017 AACR.


Assuntos
Etoposídeo/administração & dosagem , Interação Gene-Ambiente , Neuroblastoma/tratamento farmacológico , Receptores de Lisoesfingolipídeo/genética , Fator de Transcrição STAT3/genética , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Cloridrato de Fingolimode/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Interferente Pequeno , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 77(18): 5118-5128, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716895

RESUMO

CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR.


Assuntos
Linfócitos B/patologia , Biomarcadores Tumorais/metabolismo , Antígeno CTLA-4/metabolismo , Linfoma de Células B/patologia , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/metabolismo , Adulto , Idoso , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD28/metabolismo , Proliferação de Células , Feminino , Humanos , Ativação Linfocitária , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Transdução de Sinais , Linfócitos T/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA