Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
3.
Environ Toxicol ; 39(3): 1617-1630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009649

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been reported to play important roles in cancers. Here, we characterized circVMP1 (hsa_circ_0006508), an important circRNA which promoted glycolysis and disease progression in colorectal cancer (CRC). In this study, we aimed to explore the mechanism by which circVMP1 regulated tumor glycolysis and its related pathways in promoting CRC cell proliferation and metastasis. METHODS: The expression level of circVMP1 in CRC tissues and adjacent normal tissues was detected using quantitative PCR. In vitro and in vivo functional experiments were used to evaluate the effects of circVMP1 in the regulation of CRC cell proliferation and migration. Mitochondrial stress tests and glycolysis stress tests were conducted to detect the effect of circVMP1 on oxidative phosphorylation and glycolysis. Dual-luciferase reporter and RNA immunoprecipitation assays were used to evaluate the interaction between circVMP1, miR-3167, and HKDC1. RESULTS: We demonstrated that the level of circVMP1 was significantly upregulated in CRC tissues compared with normal tissues. In HCT116 and SW480 cells, overexpression of circVMP1 promoted proliferation, metastasis, and glycolysis. In vivo analysis indicated that circVMP1 accelerated the proliferation of xenograft tumors. As for the mechanism, overexpression of circVMP1 increased the levels of hexokinase domain component 1 (HKDC1) through competitive binding with miR-3167. CONCLUSION: Our study reported that circVMP1 was one of the tumor driver genes that promoted CRC malignant progression and glycolysis by upregulating HKDC1. CircVMP1/miR-3167/HKDC1 was a signaling axis that might be a target for CRC therapy.


Assuntos
Neoplasias Colorretais , Hexoquinase , RNA Circular , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Glicólise , Hexoquinase/metabolismo , MicroRNAs
4.
Environ Sci Pollut Res Int ; 30(17): 49290-49300, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773263

RESUMO

To reduce the harmful effects of nicosulfuron on sweet corn, the physiological regulation mechanism of sweet corn detoxification was studied. This study analyzed the effects of nicosulfuron stress on the glyoxalase system, hormone content, and key gene expression of nicosulfuron-tolerant "HK301" and nicosulfuron-sensitive "HK320" sweet corn seedling sister lines. After spraying nicosulfuron, the methylglyoxal (MG) content in HK301 increased first and then decreased. Glyoxalase I (GlyI) and glyoxalase II (GlyII) activities, non-enzymatic glutathione (GSH), and the glutathione redox state glutathione/(glutathione + glutathione disulfide) (GSH/(GSH + GSSG)) showed a similar trend as the MG content. Abscisic acid (ABA), gibberellin (GA), and zeatin nucleoside (ZR) also increased first and then decreased, whereas the auxin (IAA) increased continuously. In HK301, all indices after spraying nicosulfuron were significantly greater than those of the control. In HK320, MG accumulation continued to increase after nicosulfuron spraying and GlyI and GlyII activities, and GSH first increased and then decreased after 1 day of stress. The indicators above were significantly greater than the control. The GSH/(GSH + GSSG) ratio showed a decreasing trend and was significantly smaller than the control. Furthermore, ABA and IAA continued to increase, and the GA and ZR first increased and then decreased. Compared with HK320, HK301 significantly upregulated the transcription levels of GlyI and GlyII genes in roots, stems, and leaves. Comprehensive analysis showed that sweet maize seedlings improved their herbicide resistance by changing the glyoxalase system and regulating endogenous hormones. The results provide a theoretical basis for further understanding the response mechanism of the glyoxalase system and the regulation characteristics of endogenous hormones in maize under nicosulfuron stress.


Assuntos
Plântula , Zea mays , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Hormônios/metabolismo
5.
Oxid Med Cell Longev ; 2022: 4326695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873795

RESUMO

Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1ß in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/etiologia , Animais , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Hipóxia/complicações , Inflamação/tratamento farmacológico , Isquemia , Rim , Lipopolissacarídeos/farmacologia , Camundongos , Oxigênio/farmacologia , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Xantina Oxidase/metabolismo
6.
Quant Imaging Med Surg ; 12(5): 2744-2754, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35502395

RESUMO

Background: The napkin-ring sign (NRS) was accepted as unstable plaques at coronary computed tomography angiography (CCTA). However, the incidence is relatively low. We sought to assess whether the newly defined diamond-attenuation-sign [DAS, defined as a qualitative plaque feature in a mixed plaque (MP) on CCTA cross-section images by the presence of two features: a visual calcification (in the shape of a diamond) accompanied by an annular-shape lower attenuation plaque tissue surrounding the lumen like a ring], could be accurately identified as unstable atherosclerotic plaques. Methods: Eight heart transplant recipients (8 male; mean age, 48.5±11.6 years; range, 37-65 years) underwent CCTA exams prior to heart transplant surgery. Segment-based CCTA sections were independently evaluated for various plaque patterns including non-calcified plaque (NCP) with NRS (NCP-NRS), NCP without NRS (NCP-non-NRS), MP with DAS (MP-DAS), MP without DAS sign (MP-non-DAS), and calcified plaque (CP). Results: NCP-NRS plaques in 6.4% (23/358), NCP-non-NRS plaques in 24.0% (86/358), MP-DAS plaques in 18.2% (65/358), MP-non-DAS plaques in 20.1% (72/358), and calcified-plaques in 7.0% (25/358) of all cases. The specificity and positive predictive values of the MP-DAS and NCP-NRS signs to identify unstable plaque features were excellent (97.1% vs. 98.6%, 90.8% vs. 87.0%, respectively). DAS plaques were more frequently seen on CCTA exams than that of NRS (39.3% vs. 13.3%, respectively, P=0.001). The diagnostic performance of MP-DAS to identify unstable coronary lesions was superior compared to NCP-NRS [area under the receiver operating characteristic curve (ROC), 0.756; 95% CI: 0.717-0.791 vs. 0.558; 95% CI: 0.514-0.600, respectively, P<0.001]. Conclusions: Both the DAS and NRS had a high specificity and positive predictive value for the presence of unstable lesions. DAS was a better identification of unstable atherosclerotic plaques in the assessment of plaque-calcification-pattern (PCP).

8.
Int J Gen Med ; 14: 1033-1039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790632

RESUMO

OBJECTIVE: This study aimed to investigate the effects of the Sn100 kVp tube voltage mode on the image quality and radiation dose of computed tomography pulmonary angiography (CTPA). METHODS: A total of 145 patients who underwent CTPA were randomly divided into five groups: control group (120 kVp, 150 mAs), test group A (Sn100 kVp, 270 mAs), test group B (120 kVp, 30 mAs), test group C (70 kVp, 150 mAs), and test group D (80 kVp, 70 mAs). After image post-processing, the image quality and radiation dose of each group were analyzed. RESULTS: The computed tomography values of images in the four test groups were more than 250 HU, which met the criteria for diagnosis. The signal-to-noise ratio and contrast-to-noise ratio of the images in the four test groups were lower than those in the control group. The radiation dose in each test group was lower than in the control group. The radiation dose was lowest in test group A. CONCLUSION: The Sn100 kVp energy spectrum purification protocol can meet the requirements for clinical diagnosis, ensure image quality, and reduce the dose of radiation that patients receive.

9.
Front Aging Neurosci ; 13: 745774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002672

RESUMO

Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.

10.
J Int Med Res ; 48(6): 300060520924205, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32567443

RESUMO

OBJECTIVE: This study aimed to evaluate the joint monitoring of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) in vertebral canal decompression surgery for acute spinal cord injury. METHODS: Twenty-four patients, who were admitted to the hospital for the surgical treatment of spinal cord injury with SEP and MEP monitoring, were assigned to the intraoperative monitoring group (group I). In addition, 24 patients who were admitted to the hospital for the surgical treatment of spinal cord injury without SEP or MEP monitoring were assigned to the control group (group C). RESULTS: In group I, there were significant changes before and after decompression surgery in the P40 latency and amplitude, and in the latency of MEP in the abductor hallucis brevis (AHB), in patients with improved spinal nerve function following surgery. In contrast, there were no significant differences in the P40 latency or amplitude, or the latency of MEP in the AHB, in patients who showed no improvement after surgery. CONCLUSION: In vertebral canal decompression surgery for acute spinal cord injury, the application of joint MEP and SEP monitoring can timely reflect changes in spinal cord function.


Assuntos
Descompressão Cirúrgica/métodos , Monitorização Intraoperatória/métodos , Canal Medular/cirurgia , Adulto , China , Descompressão/métodos , Potencial Evocado Motor/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canal Medular/fisiopatologia , Medula Espinal , Traumatismos da Medula Espinal/cirurgia
11.
Onco Targets Ther ; 13: 4035-4048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494158

RESUMO

BACKGROUND: Emerging evidence suggests that circular RNAs (circRNAs) are vital regulators in a range of cancers. "miRNA sponge" is the most reported role played by circRNAs in many tumors. The insulin-like growth factor (IGF) 1 pathway plays a key role in the development and progression of many cancers, including colorectal cancer (CRC). The aim of the study is to establish the potential clinical value and driving molecular mechanisms of circRNAs in CRC. MATERIALS AND METHODS: Real-time quantitative RT-PCR (qRT-PCR) was performed to measure the circRUNX1 expression in 52 tissue samples from CRC patients. We verified the tumor promotor role of circRUNX1 in cell-based in vitro and in vivo assays. Human growth factor array was used to identify circRUNX1-regulated signaling pathways. We then used a double luciferase reporter assay and RNA fluorescence in situ hybridization to identify the downstream miR-145-5p of circRUNX1. Furthermore, we performed Western blotting and biological function assays to demonstrate if the circRUNX1/miR-145-5p/IGF1 axis is responsible for the proliferation of CRC cells and promotes CRC development. RESULTS: By performing qRT-PCR from CRC tissues and paired adjacent normal mucosa tissues, we identified that circRUNX1 expression was significantly upregulated in CRC tissues and positively related with lymph node metastasis, distant metastasis and advanced tumor-node-metastasis tumor stage in patients. Functionally, circRUNX1 knockdown inhibited cell proliferation and migration and promoted apoptosis, whereas its overexpression exerted opposite effects. In vivo, circRUNX1 promoted tumor growth and metastasis. Mechanically, circRUNX1 shared miRNA response elements with IGF1. circRUNX1 competitively bound to miR-145-5p and prevented miR-145-5p from decreasing the expression of IGF1, which facilitated tumor growth. CONCLUSION: Our studies verified that circRUNX1 functions as a tumor promotor in CRC cells by targeting the miR-145-5p/IGF1 signaling pathway and may have potential use as a prognostic indicator and therapeutic target in CRC patients.

13.
Oncol Rep ; 43(4): 1113-1124, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32323780

RESUMO

Inflammasomes can identify endogenous danger signals as an inflammatory immune response. As the most common inflammasome, the NLR pyrin family domain containing 3 (NLRP3) inflammasome is associated with the pathogenesis of different tumors. However, the function of the NLRP3 inflammasome in esophageal cancer (EC) has rarely been reported. Herein, the expression levels of the components of NLRP3 inflammasome and Ki­67 were analyzed by immunohistochemistry. Furthermore, correlations between the NLRP3 inflammasome and Ki­67 along with the clinicopathological features of EC patients were evaluated. The components of the NLRP3 inflammasome were also assessed by western blot analysis and quantitative PCR. NLRP3 was silenced or overexpressed in different esophageal squamous cell carcinoma (ESCC) cell lines, and cell viability, migration and invasion were assessed by CCK­8 and Transwell assays. The present results showed that high NLRP3 expression in the tumor specimens was significantly associated with TNM stage and T category. Spearman's correlation analysis revealed a positive correlation between NLRP3 and the Ki­67 proliferation index. The mRNA and protein levels of NLRP3, apoptosis­associated speck­like protein containing a CARD (ASC), cleaved caspase­1, and interleukin (IL)­1ß in tumor tissues were higher than those in non­cancerous tissues. The level of secreted IL­1ß in tumor tissues was also increased, as compared to that in normal tissues. Silencing of NLRP3 in KYSE­70 and TE13 cells strongly attenuated cell viability, decreased cell mobility in wound­healing assays and greatly diminished the ability of cell migration and invasion in the Transwell system. Overexpression of NLRP3 in KYSE­510 and EC9706 cells markedly promoted the proliferation, migration and invasion. Collectively, these results revealed that the the NLRP3 inflammasome is upregulated in human ESCC tissues and promotes ESCC progression. Hence, NLRP3 could be a promising new candidate diagnostic and prognostic target.


Assuntos
Movimento Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose , Caspase 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Regulação para Cima
14.
Onco Targets Ther ; 13: 423-434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021287

RESUMO

BACKGROUND: Emerging studies have revealed that circular RNAs (circRNAs) correlate with diverse diseases including cancers. However, little is known about the functions of circRNAs in colorectal cancer (CRC). In our previous research, downregulation of hsa_circ_0140388 (circHUEW1) has been detected in CRC tissues through high-throughput sequencing. However, the underlying mechanism by which circHUWE1 regulates the proliferation and apoptosis in CRC has not been investigated. MATERIALS AND METHODS: The levels of circHUWE1 in 58 pairs of CRC tissues and corresponding adjacent healthy tissues were detected by RT-qPCR. In addition, the effects of circHUWE1 on cell proliferation, apoptosis migration and invasion were evaluated by cell proliferation assays, flow cytometry, and transwell assays in HCT116 and SW480 cell lines respectively. Meanwhile, the dual-luciferase reporter system assay was used to explore the interaction between circHUWE1 and miR-486 (hsa-miR-486-5p). RESULTS: In this study, we demonstrate that the expression of circHUEW1 is upregulated in CRC tissues. High expression of circHUEW1 was significantly associated with lymphovascular invasion (P =0.036), lymph node metastasis (P =0.017), distant metastasis (P =0.024), and TNM stage (P =0.009). Moreover, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.732, which indicated that circHUWE1 could serve as a potential biomarker in the detection of CRC. Silencing circHUWE1 significantly inhibited the proliferation, migration and invasion capacity of CRC cells in vitro. Mechanistically, we demonstrated that circHUWE1 could sponge miR-486 and the downregulation of miR-486 could reverse the cancer suppressive effects caused by silencing circHUWE1. CONCLUSION: In this study, our results revealed that circHUWE1 may be a potential therapeutic target and diagnostic biomarker for CRC.

15.
EBioMedicine ; 46: 66-78, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31383552

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in oncogenesis of esophageal squamous cell carcinoma (ESCC). miR-134 is reported to have a tumour-suppressive role but its role in ESCC is not known. The present study was designed to examine whether miR-134 inhibits ESCC development and further explored relevant underlying mechanisms. METHODS: Differentially expressed genes related to ESCC were identified from microarray gene expression profiles. Immunohistochemical staining and RT-qRCR assays identified elevated PLXNA1 expression levels and low miR-134. The relationship between miR-134 and PLXNA1 was predicted and further verified by a dual-luciferase reporter assay. The expression levels of miR-134 and PLXNA1 in ESCC cells were modified by miR-134 mimic/inhibitor and siRNA against PLXNA1, respectively. Thereafter, the expression of MAPK signalling pathway-related proteins, as well as the viability, migration, invasion, cell cycle and cell apoptosis of ESCC cells was investigated. FINDINGS: The results showed that miR-134 could block the MAPK signalling pathway by downregulating PLXNA1. When miR-134 was overexpressed or PLXNA1 was silenced, cell apoptosis was enhanced, the cell cycle was retarded, and the cell proliferation, migration and invasion were suppressed. In vivo experiments confirmed that miR-134 overexpression or PLXNA1 silencing restrained tumour growth and lymph node metastasis. INTERPRETATION: These findings demonstrate that cancer cell proliferation, migration, invasion, and tumour metastasis of ESCC can be suppressed by overexpression of miR-134 through downregulating PLXNA1, which subsequently blocks the MAPK signalling pathway. These results provide new potential targets and strategies for the treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Idoso , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Progressão da Doença , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Interferência de RNA
16.
Biomed Pharmacother ; 112: 108611, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797148

RESUMO

Circular RNAs (circRNAs) are a novel class of non-coding RNAs with distinct properties and diverse physiological and pathological functions. However, the functions of circRNAs in colorectal cancer (CRC) remain elusive. This study aimed to investigate the functional roles of circVAPA in CRC. High-throughput RNA sequencing was performed in 4 paired CRC tissues, and circVAPA (hsa_circ_0006990), was identified as a potential functional circRNA. Using quantitative real-time polymerase chain reaction (qRT-PCR), circVAPA was found to be up-regulated in CRC patients' tissues and plasma. Furthermore, circVAPA level was associated with unfavorable clinicopathologic features in CRC. The area under curve (AUC) of ROC was 0.724, suggesting that plasma level of circVAPA could serve as a promising biomarker for CRC detection. Sanger sequencing confirmed the back-splice junction sequences of circVAPA. Actinomycin D and RNase R treatments suggested that circVAPA was highly stable compared with its linear counterpart, and qRT-PCR for the circVAPA level in nuclear and cytoplasmic fractions indicated that circVAPA was predominantly localized in the cytoplasm. Gain-of-function and loss-of-function studies in CRC cell lines indicated that circVAPA could promote CRC cell proliferation, migration, invasion, and inhibit apoptosis. miRanda software (v3.3a) was used to predict target miRNAs of circVAPA. Moreover, target miRNAs associated with the KEGG pathway of COLORECTAL CANCER (Entry: map05210; https://www.kegg.jp/) were screened using DIANA-miRPath v.3 platform (Reverse Search module; TarBase v7.0 method). The analyses by miRanda and miRPath suggested that circVAPA could potentially bind to hsa-miR-101-3p (miR-101) associated with the COLORECTAL CANCER pathway. Luciferase reporter assay confirmed a direct interaction between circVAPA and miR-101. Furthermore, circVAPA had no effect on the expression level of miR-101, and miR-101 over-expression had the similar tumor-suppressing effects as circVAPA silencing. The tumor-promoting effect of circVAPA over-expression could be reversed by the up-regulation of miR-101. These data demonstrated that circVAPA promoted CRC progression by sponging miR-101. In conclusion, we have verified that circVAPA is up-regulated in CRC patients' tissues and plasma, and exerts oncogenic properties by sponging miR-101 in CRC. CircVAPA could serve as a promising biomarker and a therapeutic target for CRC.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias Colorretais/metabolismo , MicroRNAs/biossíntese , RNA/biossíntese , Regulação para Cima/fisiologia , Proteínas de Transporte Vesicular/biossíntese , Idoso , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA/genética , RNA Circular , Proteínas de Transporte Vesicular/genética
17.
J Exp Clin Cancer Res ; 37(1): 325, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591054

RESUMO

BACKGROUND: Circular RNA (circRNA) is a novel class of noncoding RNAs with functions in various pathophysiological activities. However, the expression profiles and functions of circRNAs in colorectal cancer (CRC) remain largely unknown. METHODS: High-throughput RNA sequencing (RNA-seq) was performed to assess circRNA expression profiles in 4 paired CRC tissues, and significantly dysregulated circRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the potential functions of dysregulated circRNAs. Target miRNAs of circRNAs were predicted using miRanda software, and were further analyzed combining DIANA-miRPath v.3 platform (Reverse Search module) with KEGG pathways of COLORECTAL CANCER and MicroRNAs in cancer (Entry: map05210 and map05206). CircRNA-miRNA interaction networks were constructed using Cytoscape software. Expression levels of a significantly down-regulated circRNA, circDDX17 (hsa_circ_0002211), was detected by qRT-PCR in 60 paired CRC tissues. CircDDX17 was knockdown by siRNA, and the biological functions of circDDX17 were examined in CRC cell lines. RESULTS: Totally 448 differentially expressed circRNAs were identified, including 394 up-regulated and 54 down-regulated circRNAs. qRT-PCR validation confirmed the reliability of the RNA-Seq data. GO and KEGG analyses revealed that these dysregulated circRNAs were potentially implicated in CRC pathogenesis. Analyses by combining miRanda and miRPath softwares with KEGG pathways suggested that the miRNAs targeted by the top 10 dysregulated circRNAs were associated with the KEGG pathways of COLORECTAL CANCER and MicroRNAs in cancer, indicating that circRNA-miRNA interactions might play important functional roles in the initiation and progression of CRC. The results of qRT-PCR for circDDX17 in 60 paired CRC tissues showed that circDDX17 was significantly down-regulated in CRC tissues and associated with unfavorable clinicopathological parameters. In vitro experiments showed that silencing of circDDX17 promoted CRC cell proliferation, migration, invasion, and inhibited apoptosis. CONCLUSIONS: In conclusion, we have identified numerous circRNAs that are dysregulated in CRC tissues compared with adjacent normal mucosa tissues. Bioinformatic analyses suggested that these dysregulated circRNAs might play important functional roles in CRC tumorigenesis. CircDDX17 functions as a tumor suppressor and could serve as a potential biomarker and a therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/genética , RNA Helicases DEAD-box/genética , RNA/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Genes Supressores de Tumor , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/biossíntese , RNA/metabolismo , RNA Circular , Análise de Sequência de RNA/métodos , Transfecção
18.
World J Gastroenterol ; 23(45): 7965-7977, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29259372

RESUMO

AIM: To investigate the potential role of microRNA-30a (miR-30a) in esophageal squamous cell carcinoma (ESCC). METHODS: Expression of miR-30a-3p/5p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of miR-30a-3p/5p on ESCC cell proliferation. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC, and then, assays were carried out to verify the potential molecular mechanism of miR-30a in ESCC. RESULTS: Low expression of miR-30a-3p/5p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of miR-30a-3p/5p promoted ESCC cell proliferation. Increased miR-30a-3p/5p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2. CONCLUSION: Down-regulation of miR-30a-3p/5p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Receptores Frizzled/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt2/genética , Regiões 3' não Traduzidas/genética , Animais , Biópsia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago , Esôfago/cirurgia , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Análise em Microsséries , Prognóstico , Proteína Wnt2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pain Med ; 18(9): 1752-1766, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169407

RESUMO

BACKGROUND: Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. METHODS: Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. RESULTS: Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. ß-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of ß-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. CONCLUSION: Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells.


Assuntos
Proteína ADAM10/biossíntese , Caderinas/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Células Satélites Perineuronais/metabolismo , Animais , Gânglios Espinais/metabolismo , Ligadura , Masculino , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervos Espinhais
20.
Mol Med Rep ; 15(3): 1319-1325, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28075452

RESUMO

MicroRNAs (miRs) have emerged as being important in cancer biology. miR­191 is a conserved miRNA, which has been investigated in detail and is reported to be induced by hypoxia-inducible factor (HIF)­1α and has an contributory action in the progression of breast, hepatic and pancreatic cancer. However, the effects of miR­191 in the progression of lung cancer are a subject of debate. In the present study, it was found that the expression of miR-191 was significantly upregulated in non­small cell lung cancer (NSCLC) cells in patients in vivo. However, the levels of miR­191 remained unchanged in SK­MES­1, A549 and NCI­H460 NSCLC cell lines, compared with the level in the normal HBE lung cell line, however, the levels were markedly upregulated in these NSCLC cell lines under conditions of chronic hypoxia. Subsequently, an miR­191 mimic was transfected into the NSCLC cell lines to examine its effect on the progression of the NSCLC cells in vitro. The data obtained using MTT and Cell counting kit­8 assays revealed that miR­191 had no effect on the proliferation of the cells under normal condition, however, their proliferation was promoted under mild hypoxic conditions. In addition, the results of a Transwell migration assay showed that miR­191 had a promoting effect on NSCLC cell migration under the conditions of chronic hypoxia. Furthermore, the TargetScan bioinformatics server and 3'-untranslated region luciferase reporter assay indicated that the transcription factor, nuclear factor 1α (NFIA) was a target of miR­191. Subsequent western blot analysis showed that, in chronic­hypoxia, the protein levels of NFIA and the tumor suppressor, CCAAT-enhancer-binding protein α, were sharply reduced in A549 cells. In conclusion, miR­191 was induced by chronic hypoxia and promoted the proliferation and migration of NSCLC cells under chronic hypoxic conditions. This promotion may be associated with its targeting of NFIA. The present findings may provide a potential molecular target for the therapeutic treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Regiões 3' não Traduzidas , Adulto , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição NFI/metabolismo , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA