Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neural Regen Res ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248166

RESUMO

Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells. However, adult tissue-derived mesenchymal stem cells encounter various obstacles, including limited tissue sources, invasive acquisition methods, cellular heterogeneity, purification challenges, cellular senescence, and diminished pluripotency and proliferation over successive passages. In this study, we used induced pluripotent stem cell-derived mesenchymal stem cells, known for their self-renewal capacity, multilineage differentiation potential, and immunomodulatory characteristics. We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury. Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation. Furthermore, the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats. Additionally, our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization. Collectively, our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats, offering promising therapeutic strategies for clinical translation.

2.
Stem Cell Res Ther ; 15(1): 215, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020413

RESUMO

BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos Sprague-Dawley , Engenharia Tecidual , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
3.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740583

RESUMO

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Assuntos
Movimento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silício , Movimento Celular/efeitos dos fármacos , Dióxido de Silício/química , Quimioterapia Combinada/métodos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Células A549 , Microscopia Eletrônica de Transmissão , Humanos
4.
Oncol Res ; 32(4): 643-658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560570

RESUMO

The platinum-based chemotherapy is one of the most frequently used treatment protocols for lung adenocarcinoma (LUAD), and chemoresistance, however, usually results in treatment failure and limits its application in the clinic. It has been shown that microRNAs (miRNAs) play a significant role in tumor chemoresistance. In this study, miR-125b was identified as a specific cisplatin (DDP)-resistant gene in LUAD, as indicated by the bioinformatics analysis and the real-time quantitative PCR assay. The decreased serum level of miR-125b in LUAD patients was correlated with the poor treatment response rate and short survival time. MiR-125b decreased the A549/DDP proliferation, and the multiple drug resistance- and autophagy-related protein expression levels, which were all reversed by the inhibition of miR-125b. In addition, xenografts of human tumors in nude mice were suppressed by miR-125b, demonstrating that through autophagy regulation, miR-125b could reverse the DDP resistance in LUAD cells, both in vitro and in vivo. Further mechanistic studies indicated that miR-125b directly repressed the expression levels of RORA and its downstream BNIP3L, which in turn inhibited autophagy and reversed chemoresistance. Based on these findings, miR-125b in combination with DDP might be an effective treatment option to overcome DDP resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Camundongos , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Apoptose/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/genética
5.
Toxicol Appl Pharmacol ; 480: 116749, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939859

RESUMO

Corosolic acid (CA) is a plant-derived terpenoid compound with many health benefits. However, the anti-tumor effects of CA in bladder cancer remain unexplored. Here, we found that CA inhibited bladder tumor both in vitro and in vivo, and had no significant toxicity in mice. With the aid of transcriptomics and proteomics, we elucidated the regulatory network mechanism of CA inhibiting bladder cancer. Through cell viability detection, cell fluorescence staining and flow cytometry, we discovered that CA inhibited bladder cancer mainly through blocking cell cycle. Interestingly, CA played anticancer roles by distinct mechanisms at different concentrations: low concentrations (<7.0 µg/ml) of CA mainly inhibited DNA synthesis by downregulating TOP2A and LIG1, and diminished mitosis by downregulating CCNA2, CCNB1, CDC20, and RRM2; high concentrations (≥7.0 µg/ml) of CA induced cell death through triggering mitophagy via upregulating NBR1, TAXBP1, SQSTM1/P62, and UBB. CA, as a natural molecule of homology of medicine and food, is of great significance for the prevention and treatment of cancer patients following clarifying its anti-cancer mechanism. This study provides a comprehensive understanding of the pharmacological mechanism of CA inhibition in bladder cancer, which is helpful for the development of new anti-tumor drugs based on CA.


Assuntos
Transcriptoma , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Mitofagia , Linhagem Celular Tumoral , Proteômica , Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células , Apoptose
6.
Cancers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296887

RESUMO

Breast cancer is the most common deadly malignancy in women worldwide. In particular, triple-negative breast cancer (TNBC) exhibits the worst prognosis among four subtypes of breast cancer due to limited treatment options. Exploring novel therapeutic targets holds promise for developing effective treatments for TNBC. Here, we demonstrated for the first time that LEMD1 (LEM domain containing 1) is highly expressed in TNBC and contributes to reduced survival in TNBC patients, through analysis of both bioinformatic databases and collected patient samples. Furthermore, LEMD1 silencing not only inhibited the proliferation and migration of TNBC cells in vitro, but also abolished tumor formation of TNBC cells in vivo. Knockdown of LEMD1 enhanced the sensitivity of TNBC cells to paclitaxel. Mechanistically, LEMD1 promoted the progress of TNBC by activating the ERK signaling pathway. In summary, our study revealed that LEMD1 may act as a novel oncogene in TNBC, and targeting LEMD1 may be exploited as a promising therapeutic approach to enhance the efficacy of chemotherapy against TNBC.

7.
Brain Res Bull ; 199: 110660, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149267

RESUMO

In ischemia-reperfusion stroke, microglia play a dual role in brain injury as well as brain repair, and promoting their switch from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype is considered to be a potential therapeutic strategy. Docosahexaenoic acid (DHA) is an essential long-chain omega-3 polyunsaturated fatty acid that exhibits potent anti-inflammatory properties in the acute phase of ischemic stroke, but its effect on microglia polarization is unknown. Thus, the objective of this study was to investigate the neuroprotective effects of DHA on rat brain following ischemia-reperfusion injury, and to investigate the mechanism by which DHA regulates microglia polarization. We administered DHA 5 mg/kg intraperitoneally daily for 3 d following a transient middle cerebral artery occlusion reperfusion model in rats. The protective effects of DHA on cerebral ischemia-reperfusion injury were detected by TTC staining, HE staining, Nissler staining, and TUNEL staining. Quantitative real-time PCR, immunofluorescence, western blot, and enzyme-linked immunosorbent assay were used to detect the expression of M1 and M2 microglia-associated markers and PPARγ-mediated ERK/AKT signaling pathway proteins. We found that DHA significantly improved brain injury by decreasing the expression of the M1 phenotypic marker (iNOS, CD16) and increasing the expression of the M2 phenotypic marker (Arg-1, CD206). DHA also increased the expression of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein, increased the expression of the pathway protein AKT, and decreased the expression of ERK1/2. In addition, DHA promoted the expression of anti-inflammatory factor IL-10 and decreased the expression of pro-inflammatory factors TNF-α and IL-1ß. However, the PPARγ antagonist GW9662 greatly blocked these beneficial effects. These results suggest that DHA may activate PPARγ to inhibit ERK and activate AKT signaling pathways to regulate microglia polarization, thereby reducing neuroinflammation and promoting neurological recovery to alleviate cerebral ischemia-reperfusion injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Sistema de Sinalização das MAP Quinases , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fenótipo
8.
Front Med (Lausanne) ; 10: 1171550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188086

RESUMO

Objective: To observe the stability and therapeutic effect of chloroquine phosphate gel on human condylomata acuminata (CA) caused by low-risk human papillomavirus (HPV). Methods: The appearance, viscosity, pH, chloroquine concentration, deethylchloroquine concentration and content uniformity of chloroquine phosphate gel were examined for 24 months, the gel met the quality standards throughout the 24-month observation. A nude mouse model harboring CA xenografts was used to observe the therapeutic effect of this gel on CA in vivo. Results: After 14 days of gel administration, compared with the control group, the treatment group had significantly smaller warts and significantly reduced DNA copy numbers of HPV6 and HPV11 in the wart tissues. Immunohistochemistry analysis of p53 protein expression in the wart tissues of the treatment group was significantly increased. Conclusion: Chloroquine phosphate gel was stable and effective against CA, possibly through the promotion of p53 protein expression to induce apoptosis, leading to the involution of warts.

9.
Technol Cancer Res Treat ; 22: 15330338231175733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37246525

RESUMO

Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Neoplasias da Próstata , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Humanos , Masculino , Terapia de Alvo Molecular , Metástase Linfática
10.
Int Immunopharmacol ; 117: 109948, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012893

RESUMO

Hepatic fat metabolism may be altered in the context of overnutrition and obesity, often resulting in the accumulation of triglycerides in hepatocytes and leading to nonalcoholic fatty liver disease (NAFLD). Natural plant alkaloids have demonstrated great potential for the prevention and treatment of NAFLD. However, the role of rhynchophylline (RHY) in lipid metabolism is not clear. We explored the role of RHY in lipid metabolism in cells treated with oleic and palmitic acids to mimic high-fat diet (HFD) conditions. RHY attenuated oleic and palmitic acid-induced increases in triglyceride accumulation in HepG2, AML12, and LMH cells. RHY also increased energy metabolism and reduced oxidative stress. We further investigated the effect of RHY on hepatic lipid metabolism in mice fed an HFD including 40 mg/kg RHY. RHY alleviated hepatic steatosis, reduced fat deposition, promoted energy metabolism, and improved glucose metabolism. We investigated the mechanism responsible for this activity by docking with key proteins of lipid metabolism disorders using Discovery Studio software, which showed that RHY interacted well with lipases. Finally, we found that adding RHY promoted lipase activity and lipolysis. In conclusion, RHY ameliorated HFD-induced NAFLD and its complications by increasing lipase activity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipase , Fígado , Metabolismo dos Lipídeos , Triglicerídeos , Oxirredução , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
11.
Front Aging Neurosci ; 15: 1028178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909944

RESUMO

Background: Stroke is one of the most severe diseases worldwide, resulting in physical and mental problems. Dl-3-n-butylphthalide, a compound derived from celery seed, has been approved for treating ischemic stroke in China. No study has evaluated how Dl-3-n-butylphthalide affects the ferroptosis SLC7A11/GSH/GPX4 signal pathway and blood-brain barrier (BBB) PDGFRß/PI3K/Akt signal pathways in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model of ischemic stroke. Methods: Sprague-Dawley rats were used to develop the MCAO/R model. Our study used three incremental doses (10, 20, and 30) of Dl-3-n-butylphthalide injected intraperitoneally 24 h after MCAO/R surgery. The neuroprotective effect and success of the model were evaluated using the neurofunction score, brain water content determination, and triphenyl-tetrazolium chloride-determined infarction area changes. Pathological changes in the brain tissue and the degree of apoptosis were examined by hematoxylin and eosin, Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, pathway proteins and RNA expression levels were studied to verify the effects of Dl-3-n-butyphthalide on both pathways. At the same time, commercial kits were used to detect glutathione, reactive oxygen species, and malondialdehyde, to detect oxidative stress in brain tissues. Results: The middle dose of Dl-3-n-butylphthalide not only improved MCAO-induced brain dysfunction and alleviated pathological damage, brain inflammatory response, oxidative stress, and apoptosis but also protected against ferroptosis and reduced BBB damage. These changes resulted in improved neurological function in the cerebral cortex. Conclusion: We speculate that Dl-3-n-butylphthalide has a neuroprotective effect on focal cerebral ischemia/reperfusion, which may be mediated through ferroptosis-dependent SLC7A11/GSH/GPX4 signal pathway and PDGFRß/PI3/Akt signal pathway.

12.
Anal Biochem ; 670: 115131, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001597

RESUMO

Hypochlorite (ClO-) plays a key role in life systems and it is necessary to develop an effective detection method. In view of the significant advantages of the fluorescent probe, we have synthesized a naked-eye recognition fluorescent probe NNCF for the detection of ClO- based on phenothiazine and naphthalimide. The probe NNCF is sensitive (LOD = 9.5 nM) and fast for ClO- (within 30 s), and its Stokes shift is as large as 161 nm. In addition, the probe NNCF has been successfully used for imaging detection of exogenous ClO- in MCF-7 cells with low toxicity.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Cor de Olho , Fenotiazinas
13.
Inflammation ; 46(2): 556-572, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36269513

RESUMO

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-ß/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-ß/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.


Assuntos
Lúpus Eritematoso Sistêmico , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Plexo Corióideo , Inflamação/tratamento farmacológico , Inflamação/complicações , Lúpus Eritematoso Sistêmico/terapia , Camundongos Endogâmicos MRL lpr , NF-kappa B , PPAR gama , Fator de Crescimento Transformador beta , Proteínas Smad/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166620, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494040

RESUMO

Obesity has become an increasingly serious health issue with the continuous improvement in living standards. Its prevalence has become an economic burden on health care systems worldwide. Flavonoids have been shown to be beneficial in the prevention and treatment of obesity. Here, we evaluated the therapeutic potential of the flavonoid hesperidin methyl chalcone (HMC) on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro. Treatment with HMC reduced oleic and palmitic acid-induced increases in intracellular triglyceride accumulation in HepG2, AML12 and LMH cells. HMC also enhanced energy metabolism and lowered oxidative stress. We used Discovery studio to dock key proteins associated with lipid metabolism disorders to HMC, and found that HMC interacted with lipase. Furthermore, we demonstrated that HMC improved lipase activity and lipolysis. In addition, we found that HMC promoted glucose absorption, alleviated lipid metabolic disorders, improved HFD-induced liver injury, and regulated HFD-induced changes in energy metabolism. In conclusion, our study demonstrated that HMC ameliorated HFD-induced obesity and its complications by promoting lipase activity, and provides a novel approach for the prevention and treatment of obesity and related diseases.


Assuntos
Chalconas , Hesperidina , Transtornos do Metabolismo dos Lipídeos , Camundongos , Animais , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Chalconas/farmacologia , Obesidade/metabolismo , Flavonoides/uso terapêutico , Metabolismo Energético , Lipase/metabolismo , Lipídeos
15.
Angew Chem Int Ed Engl ; 62(12): e202213922, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585379

RESUMO

Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cobre/farmacologia , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Ditiocarb , Neoplasias/tratamento farmacológico
16.
Front Aging Neurosci ; 14: 1015453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325190

RESUMO

The brain injury caused by cerebral ischemia-reperfusion is related to mitochondrial damage. Maintaining the normal function of mitochondria, promoting angiogenesis, protecting neuronal cells, and resisting oxidative stress are the keys to functional recovery after acute ischemic stroke. In this study, we established a middle cerebral artery occlusion (MCAO) model and investigated the effects of 1α,25-dihydroxyvitamin D3 (VitD or 1,25-D3) on mitochondrial function via the adenosine 5'-monophosphate-activated protein kinase (AMPK)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway in rats with cerebral ischemia-reperfusion injury. The neurological function and infarct size were measured in each group. Hematoxylin-eosin, neuronal nucleus, and Nissl staining procedures were conducted to observe the morphology and number of the cerebral cortical neurons. Western blotting was then used to analyze p-AMPK, vitamin D receptor (VDR), p-GSK-3ß, p-AKT, P53, cytochrome C (CytC), TGF-ß, and vascular endothelial growth factor (VEGF) in mitochondria. Immunofluorescence staining was used to observe the expression of CytC and caspase-3. Succinate dehydrogenase, ATPase, reactive oxygen species, and malondialdehyde were detected by kits. RT-qPCR was used to analyze TGF-ß, VEGF, P53, and CytC mRNA. The results revealed that the cerebral infarct volume, neurological function score, apoptotic protein P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde were significantly increased in MCAO rats. 1,25-D3 reduced the infarct size and neurological function score, activated VDR, upregulated TGF-ß, p-AMPK, p-AKT, p-GSK-3ß, VEGF, ATP, and succinate dehydrogenase, and downregulated P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde. As an antagonist of VDRs, pyridoxal-5-phosphate could partially block the neuroprotective effect of 1,25-D3. In conclusion, 1,25-D3 activated AMPK/AKT/GSK-3ß signaling and VDRs, inhibited P53, CytC, and caspase-3, increased TGF-ß and VEGF, regulated mitochondrial metabolism, reduced neuronal apoptosis, promoted vascular growth, and exerted neuroprotective effects. These findings suggest that this signaling pathway may be an effective target for the treatment of ischemic stroke.

17.
Anal Methods ; 14(46): 4867-4871, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409201

RESUMO

P-Aminophenol (PAP), a potentially toxic and mutagenic compound, is widely distributed in water and soil and has serious side effects on human health. This study presents a convenient, sensitive, and effective dual-signal assay for the detection of PAP in the environment. Two-dimensional manganese dioxide (MnO2) nanosheets were used as the carrier and quencher for fluorophore-labelled DNA to form a dual-signal nanoprobe, MnO2-DNA. Based on a specific redox reaction between the MnO2 nanosheets and target PAP, the corresponding absorption intensity of the product and the fluorescence intensity were both "turn-on" and also exhibited excellent correlation with the concentration of PAP. This strategy not only remarkably simplifies the detection process but also improves the reliability of results due to the dual-signal response, which has promising applications in environmental, clinical, and industrial research fields.


Assuntos
Compostos de Manganês , Nanoestruturas , Humanos , Reprodutibilidade dos Testes , Óxidos , DNA
18.
Contrast Media Mol Imaging ; 2022: 7580008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110980

RESUMO

Acquired Immune Deficiency Syndrome (AIDS) is a fatal infectious disease caused by human immunodeficiency virus, which poses a serious threat to human health. The contagion of AIDS has greatly increased the psychological pressure of frontline medical staff. The mental health service behavior of medical staff based on electrocardiograms is analyzed. Firstly, an automatic ECG analysis technique is employed to evaluate the mental health service behavior of medical staff. Then, in order to promote the relationship between doctors and patients, Holter's algorithm is applied to improve mental health services. Subsequently, the experiment based on ECG data is conducted to solve the problem of relieving the psychological pressure of medical staff. All samples are divided into high group (average score is 29.21), average group (average score is 31.43), and low group (average score is 34.85) according to the first 20%, middle 60%, and last 20%. The experimental results show that a considerable number of frontline medical personnel have psychological problems in AIDS surgery.


Assuntos
Síndrome da Imunodeficiência Adquirida , Serviços de Saúde Mental , Eletrocardiografia , Humanos , Corpo Clínico
19.
ACS Omega ; 7(31): 27382-27389, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967021

RESUMO

Gas injection is an effective method to enhance oil recovery of low-permeability and tight reservoirs, while the complicated fractures distributed in the formation have a noticeable effect on the performance of gas injection. In this study, three methods of gas injection were employed to conduct microfluidic experiments using micromodels simulating fractured reservoirs. The sweep efficiency and oil displacement efficiency of pores and throats, fractures, and the whole region were measured respectively to evaluate the oil displacement effects of the different gas injection methods. Moreover, the microscopic displacement process and the morphology of residual oil in porous media were analyzed to investigate the behavior of gas activated oil. The experimental results show that there are three stages of gas displacing oil: the oil in fractures was displaced first, then the oil in the pores and throats around the fracture was displaced, and finally the gas channeling occurred in fractures. Moreover, the sweep efficiency and oil displacement efficiency showed a tendency of increasing fast first and then reaching a steady state. Simultaneous injection of gas and water showed an optimal enhanced oil recovery effect among these three injection methods. Gas can invade deep throats, and those are difficult for water to sweep. However, the higher viscosity of water endowed it a smaller mobility than gas. And, the channeling in the two-phase mixing region was inhibited more obviously. The overall sweep efficiency and oil displacement efficiency increased about 18.4% and 13.4%, respectively.

20.
Endocr J ; 69(10): 1159-1172, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35858781

RESUMO

Findings of preclinical studies and recent phase I/II clinical trials have shown that mesenchymal stem cells (MSCs) play a significant role in the development of diabetic kidney disease (DKD). Thus, MSCs have attracted increasing attention as a novel regenerative therapy for kidney diseases. This review summarizes recent literature on the roles and potential mechanisms, including hyperglycemia regulation, anti-inflammation, anti-fibrosis, pro-angiogenesis, and renal function protection, of MSC-based treatment methods for DKD. This review provides novel insights into understanding the pathogenesis of DKD and guiding the development of biological therapies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Nefropatias Diabéticas/prevenção & controle , Fibrose , Hiperglicemia/patologia , Rim/patologia , Diabetes Mellitus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA