Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Obes Surg ; 30(1): 279-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605365

RESUMO

BACKGROUND: Duodenal-jejunal bypass (DJB) can dramatically improve type 2 diabetes independent of weight loss and food restriction. Increasing evidence has demonstrated that brain insulin signaling plays an important role in the pathophysiology of type 2 diabetes. This study explores whether the antidiabetic effect of DJB is involved in brain insulin signaling activation and brain glucose utilization. METHODS: A diabetic rat model was established by high-fat and high-glucose diet. DJB or sham surgery was performed in diabetic rats. 18F-FDG PET scanning was used to detect glucose uptake in different organs, particularly in the brain. The levels of glucose transporters, glucose utilization-related proteins (HK1 and PFK2), insulin, and insulin signaling pathway-related proteins (InsR, IRS1/2, PI3K, and p-Akt) in the brain tissues were evaluated and analyzed. RESULTS: The results showed that DJB significantly improved basal glycemic parameters and reversed the decreasing glucose uptake in the brains of type 2 diabetic rats. DJB significantly increased not only the expression levels of brain insulin, IRS1/2, PI3K, and p-Akt but also the levels of the glucose utilization enzymes HK1 and PFK2 in the brain. CONCLUSION: These results indicate that enhanced brain insulin signaling transduction and brain glucose utilization play important roles in the antidiabetic effect of DJB.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/cirurgia , Derivação Gástrica/métodos , Glucose/metabolismo , Insulina/metabolismo , Jejuno/cirurgia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Duodeno/patologia , Resistência à Insulina/fisiologia , Jejuno/patologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Resultado do Tratamento , Redução de Peso
2.
Biol. Res ; 53: 08, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1100914

RESUMO

BACKGROUND: Rice is the staple food of many people around the world. However, most rice varieties, especially widely grown indica varieties and hybrids, are sensitive to cold stress. In order to provide a basis for the utilization of a common wild rice (CWR, Oryza rufipogon Griff.) named 'Chaling' CWR in cold-tolerant rice breeding and deepen the understanding of rice cold tolerance, the cold tolerance of ratoon 'Chaling' CWR was studied under the stress of the natural low temperature in winter in Changsha, Hunan province, China, especially under the stress of abnormal natural low temperature in Changsha in 2008, taking other ratoon CWR accessions and ratoon cultivated rice phenotypes as control. RESULTS: The results showed that ratoon 'Chaling' CWR can safely overwinter under the natural conditions in Changsha (28° 22' N), Hunan province, China, which is a further and colder northern place than its habitat, even if it suffers a long-term low temperature stress with ice and snow. In 2008, an extremely cold winter appeared in Changsha, i.e., the average daily mean temperature of 22 consecutive days from January 13 to February 3 was - 1.0 °C, and the extreme low temperature was - 4.7 °C. After subjected to this long-term cold stress, the overwinter survival rate of ratoon 'Chaling' CWR was 100%, equals to that of ratoon 'Dongxiang' CWR which is northernmost distribution in the word among wild rice populations, higher than those of ratoon 'Fusui' CWR, ratoon 'Jiangyong' CWR, and ratoon 'Liujiang' CWR (63.55-83.5%) as well as those of ratoon 'Hainan' CWR, ratoon 'Hepu' CWR, and all the ratoon cultivated rice phenotypes including 3 japonica ones, 3 javanica ones, and 5 indica ones (0.0%). CONCLUSIONS: The results indicate that ratoon 'Chaling' CWR possesses strong cold tolerance and certain freezing tolerance.


Assuntos
Oryza/fisiologia , Adaptação Fisiológica/fisiologia , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Fenótipo , Estações do Ano
3.
Appl Microbiol Biotechnol ; 103(19): 8203-8214, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396678

RESUMO

Microbial bioremediation of heavy metal-contaminated soil is a potential technique to reduce heavy metals in crop plants. However, the dynamics and roles of the local microbiota in bioremediation of heavy metal-contaminated soil following microbial application are rarely reported. In this study, we used Pseudomonas chenduensis strain MBR for bioremediation of Cd-contaminated paddy soil and investigated its effects on the dynamics of the local soil bacterial community and Cd accumulation in rice. Cd accumulation in rice grains and roots were significantly reduced by the addition of the strain MBR. The addition of the strain MBR caused greater changes in bacterial communities in rhizosphere soil than in bulk soil. MBR enhanced the roles of microbial communities in transformation of Cd fractions, especially in rhizosphere soil. The strain MBR likely regulated abundant subcommunities more than rare subcommunities to improve Cd bioremediation, especially in rhizosphere soil. Consequently, the dynamics and functional roles of the local microbial communities differed significantly during bioremediation between abundant and rare subcommunities and between rhizosphere soil and bulk soil. This study provides new insight into the microbiota-related mechanisms underlying bioremediation.


Assuntos
Cádmio/metabolismo , Consórcios Microbianos , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cádmio/análise , Oryza/química , Raízes de Plantas/química , Pseudomonas/crescimento & desenvolvimento , Sementes/química
4.
Sci Total Environ ; 640-641: 1034-1043, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021270

RESUMO

The cadmium contamination in the paddy soil results in serious environmental pollutions. In situ soil remediation based on the applications of additives such as functional microorganisms and biochars has gradually attained more attentions. However, how these exogenous additives affect the local microbial communities is less discussed. In this study, a heavy metal resistant bacterium (Pseudomonas chenduensis, strain MBR) and biochar derived from oil palm fibers were separately added into the simulated Cd-contaminated paddy soil to investigate the roles of these additives in the soil remediation and regulating local microbial community. The results showed that compared with control, the addition of the strain MBR and biochar reduced the exchangeable/acid soluble cadmium fraction by 30% and 18%, respectively. Moreover, higher microbial diversity, more deterministic effects and less variation in microbial community were observed in the treatments supplemented with the strain MBR and biochar, and the increase of the deterministic effects on microbial interactions was demonstrated by network analysis further. Additionally, the abundance of the strain MBR in the paddy soil decreased as time passed, which maximally decreased the disturbance for the local micro-ecological niche and ensured ecological security. These results showed that two additives supplementation, in particular Pseudomonas chenduensis, can significantly decrease cadmium availability, contributing to the reduction of the disturbance on soil microbial community and maintaining microbial stability under cadmium pressure. It highlights a new criterion referred to micro-ecology for the evaluation of the roles of additives in local soil remediation.


Assuntos
Cádmio/metabolismo , Carvão Vegetal , Pseudomonas/fisiologia , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Cádmio/análise , Monitoramento Ambiental , Oryza , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
PLoS One ; 9(11): e112609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383887

RESUMO

Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds.


Assuntos
Bactérias/classificação , Bactérias/genética , Zea mays/microbiologia , Perfilação da Expressão Gênica/métodos , Genes Bacterianos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Rizosfera , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA