Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(1): e1139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270310

RESUMO

BACKGROUND: For the unclear pathogenesis of Sjogren's syndrome (SS), further exploration is necessary. Mesenchymal stem cells (MSCs) and derived exosomes (MSCs-exo) have exhibited promising results in treating SS. OBJECT: This study aimed to investigate the effect and mechanism of human umbilical cord MSCs (UC-MSCs) on SS. METHODS: Nonobese Diabetic (NOD) mouse splenic T cells were co-cultured with UC-MSCs and UC-MSCs-exo, and interferon-gamma (IFN-γ), interleukin (IL)-6, IL-10, prostaglandin E2 (PGE2), and transforming growth factor-ß1 (TGF-ß1) levels in the supernatant were assessed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Co-cultured T cells were injected into NOD mice via the tail vein. The inflammatory cell infiltration in the intestine and the submandibular gland was characterized by hematoxylin-eosin staining. Treg/Th17 homeostasis within the spleen was determined by flow cytometry. Gut microbiota was detected by 16S rRNA sequencing, and the relationship between differential microbiota and Treg/Th17 cytokines was analyzed by the Pearson correlation coefficient. RESULTS: UC-MSCs, UC-MSCs-exo, and NOD mouse splenic T cells were successfully cultured and identified. After T cells were co-cultured with UC-MSCs and UC-MSCs-exo, both IFN-γ and IL-6 were decreased while IL-10, PGE2, and TGF-ß1 were increased in transcriptional and translational levels. UC-MSCs and UC-MSCs-exo partially restored salivary secretion function, reduced Ro/SSA antibody and α-Fodrin immunoglobulin A levels, reduced inflammatory cell infiltration in the intestine and submandibular gland, raised proportion of Treg cells, decreased IFN-γ, IL-6, IL-2, IL-17, lipopolysaccharide, and tumor necrosis factor-alpha levels, and raised IL-10, Foxp3, and TGF-ß1 levels by affecting co-cultured T cells. The intervention of UC-MSCs and UC-MSCs-exo improved intestinal homeostasis in NOD mice by increasing microbiota diversity and richness. Additionally, differential microbiota was significantly associated with Treg/Th17 cytokine levels. CONCLUSION: Human UC-MSCs and UC-MSCs-exo improved disease characterization of SS in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Mesenquimais , Síndrome de Sjogren , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Camundongos Endogâmicos NOD , Interleucina-10 , Interleucina-6 , Dinoprostona , RNA Ribossômico 16S , Síndrome de Sjogren/terapia , Fator de Crescimento Transformador beta1 , Citocinas , Imunidade Celular , Cordão Umbilical
2.
Poult Sci ; 102(6): 102594, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043960

RESUMO

Marek's disease (MD) is a lymphoproliferative neoplastic disease caused by Marek's disease virus (MDV). Previous studies have showed that DNA methylation was involved in MD development, but systematic studies are still lacking. Herein, we performed whole genome bisulfite sequencing (WGBS) and RNA-seq in MDV-infected tumorous spleens (IN), noninfected spleens (NoIN), and survivor (SUR) spleens of chickens to identify the genes playing important roles in MD tumor transformation. We generated the first genome-wide DNA methylation profile of MDV-infected, noninfected, and survivor chickens. Combined the WGBS and RNA-Seq, we found that the expression of 25% differential expression genes (DEGs) were significantly correlated with methylation of CpG sites in their gene bodies or promoters. Further, we focused on the DEGs with differentially methylated regions (DMRs) on genes' body and promoter, and it showed the expression of 60% DEGs were significantly correlated with methylation of CpG sites in DMRs. Finally, we identified 8 genes, including CD4, CTLA4, DTL, HMGB1, LGMN, NUP210, RAD52, and ZAP70, and their expression was negatively correlated with methylation of DMRs in their promoters in both IN vs. NoIN and IN vs. SUR. These 8 genes showed specifically high expression in IN groups and clustered in module turquoise analyzed by WGCNA. Out of 8 genes, CD4 and HMGB1 were drop in QTLs associated with MD resistance. Thus, we overexpressed the 2 genes to simulate their high expression in the IN group and found they significantly promoted MDCC-MSB-1 cell proliferation, which revealed they might play promoting roles in MD tumorigenesis in IN due to their high expression induced by hypomethylation.


Assuntos
Proteína HMGB1 , Herpesvirus Galináceo 2 , Doença de Marek , Neoplasias , Animais , Doença de Marek/genética , Galinhas/genética , Transcriptoma , Baço , Metilação de DNA , Proteína HMGB1/genética , Herpesvirus Galináceo 2/genética , Carcinogênese/genética , Neoplasias/veterinária
3.
Cell Prolif ; 56(3): e13371, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526415

RESUMO

OBJECTIVES: Oogonial stem cells (OSCs) are germ cells that can sustain neo-oogenesis to replenish the pool of primary follicles in adult ovaries. In lower vertebrates, fresh oocytes are produced by numerous OSCs through mitosis and meiosis during each reproduction cycle, but the OSCs in adult mammals are rare. The birds have retained many conserved features and developed unique features of ovarian physiology during evolution, and the presence of OSCs within avian species remain unknown. MATERIALS AND METHODS: In this study, we investigated the existence and function of OSCs in adult chickens. The chicken OSCs were isolated and expanded in culture. We then used cell transplantation system to evaluate their potential for migration and differentiation in vivo. RESULTS: DDX4/SSEA1-positive OSCs were identified in both the cortex and medulla of the adult chicken ovary. These putative OSCs undergo meiosis in the reproductively active ovary. Furthermore, the isolated OSCs were expanded in vitro for months and found to express germline markers similar to those of primordial germ cells. When transplanted into the bloodstream of recipient embryos, these OSCs efficiently migrated into developing gonads, initiated meiosis, and then derived oocytes in postnatal ovaries. CONCLUSIONS: This study has confirmed the presence of functional OSCs in birds for the first time. The identification of chicken OSCs has great potential for improving egg laying and preserving endangered species.


Assuntos
Células-Tronco de Oogônios , Ovário , Feminino , Animais , Galinhas , Células-Tronco de Oogônios/fisiologia , Oócitos , Oogênese , Mamíferos
4.
Exp Parasitol ; 198: 17-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30682337

RESUMO

Toxoplasmosis is a widely distributed parasitic protozoan disease, caused by Toxoplasma gondii (T. gondii). High prevalence of toxoplasmosis and limitations of conventional treatments lead to a search for new therapeutic drugs. Lycosin-I is a linear peptide, derived from the venom of the spider Lycosa singoriensis. The aim of the present study was to determine the anti-parasitic effect of lycosin-Ι against T. gondii. In vitro, the anti-T. gondii activities of lycosin-Ι were evaluated by MTT assay, trypan blue exclusion assay, cell counting assay and plaque assay. Cytokines of IL-6 and IL-8 were measured by quantitative PCR. In addition, the structures of tachyzoites treated with lycosin-Ι were also observed by scanning and transmission electron microscopy. In vivo, mice were challenged with parasites treated by lycosin-I. The results revealed that lycosin-Ι had shown a significant ability to inhibit T. gondii invasion and proliferation. Cytokines of IL-6 and IL-8 were reduced by lycosin-Ι at transcription level in human foreskin fibroblast (HFF) cells infected with T. gondii tachyzoites, but they were increased compared to non-infected cells. For tachyzoites, lycosin-Ι induced their cell membrane alterations with formation of invaginations, some of them appeared to be vacuolated in their cytoplasm. Moreover, lycosin-Ι had prolonged the survival time of mice by controlling T. gondii proliferation. In conclusion, our present study provides the first evidence for anti-T. gondii by using the spider peptide lycosin-Ι. These findings suggest that lycosin-Ι is a potential alternative agent for the treatment of toxoplasmosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Coccidiostáticos/farmacologia , Venenos de Aranha/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Contagem de Células , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Coccidiostáticos/química , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Venenos de Aranha/química , Sais de Tetrazólio , Tiazóis , Toxoplasma/imunologia , Toxoplasma/ultraestrutura , Azul Tripano
5.
Gen Comp Endocrinol ; 270: 96-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339806

RESUMO

Gonadotropin-releasing hormone-I (GnRH-I) has been identified in the ovaries of vertebrate species, and this decapeptide is a key regulator of reproductive functions. However, its biological action and regulatory mechanism in the chicken ovary remain to be characterized. In this study, the expression of GnRH-I gene in chicken hypothalamus and ovaries at different developmental stages and different sizes of follicles was investigated, and the effect of GnRH-I mRNA on chicken follicular cells was analyzed in vitro. The results showed that the expression of GnRH-I was dramatically decreased in the hen ovary compared to that in the hypothalamus after sexual maturation. In the mature ovarian follicles, GnRH-I mRNA levels were significantly higher in theca cells than that in granulosa cells. Overexpression of GnRH-I decreased the expression of luteinizing hormone receptor (LHR) mRNA in theca cells from preovulatory follicles but had no effect on granulosa cells. Treatment of theca cells with different concentrations of luteinizing hormone (LH) significantly increased GnRH-I mRNA expression at low doses (50 ng/ml) but significantly decreased it at higher doses (200 ng/ml). Furthermore, GnRH-I inhibited LH-induced LHR expression at the lower dose of LH (50 ng/ml). These findings provide strong evidence indicating that GnRH-I is an important regulator in the chicken ovary.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Células Tecais/metabolismo , Animais , Galinhas , Feminino
6.
Inflamm Res ; 67(5): 455-466, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29523916

RESUMO

OBJECTIVE: The peptide lycosin-I has anti-bacterial and anti-cancer capacities. However, the anti-inflammatory activity of lycosin-I remains unknown. We investigated whether lycosin-I could attenuate inflammation. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with lycosin-I before exposure to tumor necrosis factor-α (TNF-α). The expression of intercellular cell adhesion molecule-1 (ICAM-1), nuclear transcription factor-kappa B (NF-κB) p65 and inhibitory subunit of NF-κB alpha (IκBα) was evaluated by western blot. The expression of interleukin-6 (IL-6) and interleukin-8 (IL-8) was detected by quantitative RT-PCR or ELISA. Immunofluorescence analysis was used to determine the impact of lycosin-I on NF-κB pathway. C57BL/6 mice were pretreated with lycosin-I before exposure with lipopolysaccharide (LPS). RESULTS: Lycosin-I significantly reduced the TNF-α-enhanced expression of IL-6, IL-8 and ICAM-1. Lycosin-I also inhibited the human monocyte cells adhesion to HUVECs. We further demonstrated that lycosin-I could effectively suppress the reaction of endothelial cells to TNF-α by inhibiting IκBα degradation. Subsequently, the phosphorylation and translocation of NF-κB p65 could also be attenuated. Furthermore, lycosin-I exhibited a significant protection of C57BL/6 mice against LPS-induced death. CONCLUSIONS: Our results suggested that the anti-inflammatory activity of lycosin-I was associated with NF-κB activation and lycosin-I had potential to be a novel therapeutic candidate for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Venenos de Aranha/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Quinase I-kappa B/biossíntese , Inflamação/induzido quimicamente , Inflamação/mortalidade , Molécula 1 de Adesão Intercelular/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/biossíntese , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/biossíntese
7.
Peptides ; 99: 108-114, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248696

RESUMO

Lycosin-I, a spider peptide isolated from the venom of the spider Lycosa singoriensis, has anti-bacteria and anti-cancer properties in organisms. However, cardiovascular effects of Lycosin-I have not been studied. In this study, we investigated for the first time the vasodilator and hypotensive effects of Lycosin-I and the possible mechanisms, in order to develop a promising treatment for hypertension-related diseases. For in vitro experiments, thoracic aortas were isolated, and divided into two groups, endothelium-intact and endothelium-denuded aortic rings. Lycosin-I induced a remarkable dose-dependent relaxation in endothelium-intact aortic rings pre-treated with phenylephrine (p < 0.05), while it showed no obvious vasodilator effects in endothelium-denuded aortic rings (p > 0.05). The vasodilator effects of Lycosin-I were significantly weakened by a nitric oxide synthase (NOS) inhibitor, L-NAME (p < 0.001) and a selective inhibitor of nitric oxide (NO)-sensitive soluble guanylate cyclase (sGC), ODQ (p < 0.05), respectively. The levels of endothelial nitric oxide synthase (eNOS) phosphorylation and the NO production were significantly higher in human umbilical vascular endothelial cells pre-cultured with Lycosin-I than the control (p < 0.001), determined via western blot analysis and ozone-chemiluminescence technology. For in vivo experiments, arterial and venous catheters were inserted for mean arterial pressure (MAP) recording and drug administration in anaesthetized spontaneously hypertensive rats. Lycosin-I caused a transient drop of MAP 2 min after the administration compared with the control (p < 0.001). In conclusion, Lycosin-I has the potential to be an anti-hypertensive drug by endothelium-dependent vasodilatation, in which eNOS and NO-sensitive sGC are two main involved factors.


Assuntos
Anti-Hipertensivos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aorta Torácica/metabolismo , Proteínas de Artrópodes/farmacologia , Hipotensão/induzido quimicamente , Venenos de Aranha/farmacologia , Aranhas/química , Vasodilatação/efeitos dos fármacos , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Anti-Hipertensivos/química , Peptídeos Catiônicos Antimicrobianos/química , Aorta Torácica/patologia , Proteínas de Artrópodes/química , Hipotensão/metabolismo , Hipotensão/patologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Venenos de Aranha/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-27200301

RESUMO

GX0101, Marek's disease virus (MDV) strain with a long terminal repeat (LTR) insert of reticuloendotheliosis virus (REV), was isolated from CVI988/Rispens vaccinated birds showing tumors. We have constructed a LTR deleted strain GX0101ΔLTR in our previous study. To compare the host responses to GX0101 and GX0101ΔLTR, chicken embryo fibroblasts (CEF) cells were infected with two MDV strains and a gene-chip containing chicken genome was employed to examine gene transcription changes in host cells in the present study. Of the 42,368 chicken transcripts on the chip, there were 2199 genes that differentially expressed in CEF infected with GX0101 compared to GX0101ΔLTR significantly. Differentially expressed genes were distributed to 25 possible gene networks according to their intermolecular connections and were annotated to 56 pathways. The insertion of REV LTR showed the greatest influence on cancer formation and metastasis, followed with immune changes, atherosclerosis, and nervous system disorders in MDV-infected CEF cells. Based on these bio functions, GX0101 infection was predicated with a greater growth and survival inhibition but lower oncogenicity in chickens than GX0101ΔLTR, at least in the acute phase of infection. In summary, the insertion of REV LTR altered the expression of host genes in response to MDV infection, possibly resulting in novel phenotypic properties in chickens. Our study has provided the evidence of retroviral insertional changes of host responses to herpesvirus infection for the first time, which will promote to elucidation of the possible relationship between the LTR insertion and the observed phenotypes.


Assuntos
Mardivirus/genética , Doença de Marek/virologia , Mutagênese Insercional , Doenças das Aves Domésticas/virologia , Sequências Repetidas Terminais/genética , Animais , Células Cultivadas , Embrião de Galinha , Galinhas/virologia , Biologia Computacional , Fibroblastos/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Vírus da Reticuloendoteliose/genética , Transcrição Gênica/genética
9.
BMC Genomics ; 11: 445, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20663125

RESUMO

BACKGROUND: Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 x 44 K Agilent chicken custom oligo microarrays. RESULTS: Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-kappaB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. CONCLUSION: The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Herpesvirus Galináceo 1/fisiologia , Pulmão/metabolismo , Animais , Embrião de Galinha , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA