Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancer Control ; 31: 10732748241257142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769028

RESUMO

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , RNA Circular/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/genética , Linhagem Celular Tumoral , Feminino , Camundongos , Animais , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
J Inflamm Res ; 17: 2547-2561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686360

RESUMO

Introduction: Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods: In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results: The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion: GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.

3.
Front Immunol ; 15: 1299484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380329

RESUMO

Introduction: Peanut allergy is an immunoglobulin E (IgE) mediated food allergy. Rubia cordifolia L. (R. cordifolia), a Chinese herbal medicine, protects against peanut-induced anaphylaxis by suppressing IgE production in vivo. This study aims to identify IgE-inhibitory compounds from the water extract of R. cordifolia and investigate the underlying mechanisms using in vitro and in vivo models. Methods: Compounds were isolated from R. cordifolia water extract and their bioactivity on IgE production was assessed using a human myeloma U266 cell line. The purified active compound, xanthopurpurin (XPP), was identified by LC-MS and NMR. Peanut-allergic C3H/HeJ mice were orally administered with or without XPP at 200µg or 400µg per mouse per day for 4 weeks. Serum peanut-specific IgE levels, symptom scores, body temperatures, and plasma histamine levels were measured at challenge. Cytokines in splenocyte cultures were determined by ELISA, and IgE + B cells were analyzed by flow cytometry. Acute and sub-chronic toxicity were evaluated. IL-4 promoter DNA methylation, RNA-Seq, and qPCR analysis were performed to determine the regulatory mechanisms of XPP. Results: XPP significantly and dose-dependently suppressed the IgE production in U266 cells. XPP significantly reduced peanut-specific IgE (>80%, p <0.01), and plasma histamine levels and protected the mice against peanut-allergic reactions in both early and late treatment experiments (p < 0.05, n=9). XPP showed a strong protective effect even 5 weeks after discontinuing the treatment. XPP significantly reduced the IL-4 level without affecting IgG or IgA and IFN-γ production. Flow cytometry data showed that XPP reduced peripheral and bone marrow IgE + B cells compared to the untreated group. XPP increased IL-4 promoter methylation. RNA-Seq and RT-PCR experiments revealed that XPP regulated the gene expression of CCND1, DUSP4, SDC1, ETS1, PTPRC, and IL6R, which are related to plasma cell IgE production. All safety testing results were in the normal range. Conclusions: XPP successfully protected peanut-allergic mice against peanut anaphylaxis by suppressing IgE production. XPP suppresses murine IgE-producing B cell numbers and inhibits IgE production and associated genes in human plasma cells. XPP may be a potential therapy for IgE-mediated food allergy.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Camundongos , Humanos , Animais , Hipersensibilidade a Amendoim/terapia , Anafilaxia/prevenção & controle , Histamina , Interleucina-4 , Medula Óssea , Camundongos Endogâmicos C3H , Imunoglobulina E , Água
4.
Immunobiology ; 228(6): 152731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607433

RESUMO

Food allergies, which lead to life-threatening acute symptoms, are considered an important public health problem. Therefore, it is essential to develop efficient preventive and treatment measures. We developed a crude peanut protein extract (PPE)-induced allergy mouse model to investigate the effects of lycopene on peanut allergy. Mice were divided into four groups: 5 mg/kg lycopene, 20 mg/kg lycopene, no treatment, and control groups. Serum inflammatory factors were detected using enzyme-linked immunosorbent assay. In addition, pathology and immunohistochemistry analyses were used to examine the small intestine of mice. We found that lycopene decreased PPE-specific immunoglobulin E (IgE) and IL-13 levels in the serum, relieved small intestine inflammation, attenuated the production of histamine and mouse mast cell protease-1, and downregulated PI3K and AKT1 expression in the small intestine tissues of mice allergic to peanuts. Our results suggest that lycopene can ameliorate allergy by attenuating the PI3K/AKT pathway and the anaphylactic reactions mediated by PPE-specific IgE.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Camundongos , Animais , Arachis/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Licopeno , Camundongos Endogâmicos BALB C , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade a Amendoim/tratamento farmacológico , Hipersensibilidade a Amendoim/patologia , Imunoglobulina E , Alérgenos
5.
Arch Biochem Biophys ; 744: 109678, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356609

RESUMO

Malignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a ß-(1 â†’ 4)- glucosyl backbone with ß-(1 â†’ 2) and (1 â†’ 6)-d-glucosyl side-chains. The anti-melanoma effects of Abwp and its associated mechanisms in mice were then explored using in vitro and in vivo approaches. In vitro results showed that Abwp inhibited B16 melanoma cell proliferation and promoted their apoptosis in both time- and dose-dependent manners. In B16 cells induced with tumor necrosis factor (TNF-α), Abwp significantly decreased the protein expression of inflammatory-related signaling pathway (e.g., p38 MAPK and NF-κB) in time-, concentration-, and dose-dependent manners. Moreover, Abwp blocked nuclear entry of NF-κB-p65. In an in vivo mouse model featuring neoplasm transplantation with B16 melanoma cells, Abwp significantly inhibited the growth and proliferation of mouse melanoma. Hematoxylin staining showed that the invasion of melanoma cells into the lung tissue of the Abwp-treated group was significantly reduced. Immunohistochemical analysis showed that the expression of proliferation cell nuclear antigen (PCNA), N-cadherin, MMP-9, and Snail in the lung of mouse was significantly inhibited. Immunofluorescence showed that Abwp significantly interfered with the nuclear transcription of NF-κB-p65 in a dose-dependent manner. Collectively, these results showed that Abwp mediated p38 MAPK and NF-κB signaling pathways to inhibit the inflammatory response and malignant proliferation and metastasis of melanoma in mice.


Assuntos
Melanoma Experimental , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Melanoma Experimental/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proliferação de Células , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
6.
Food Res Int ; 165: 112521, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36869521

RESUMO

Tropomyosin (TM) is the main allergen in shrimp food. Algae polyphenol reportedly could affect the structures and allergenicity of shrimp TM. In this study, the alterations of conformational structures and allergenicity of TM induced by Sargassum fusiforme polyphenol (SFP) were investigated. Compared to TM, the conjugation of SFP to TM induced conformational structure instability, the IgG-binding capacity and IgE-binding capacity of TM gradually decreased with more conjugation of SFP to TM, and the conjugation of SFP to TM could significantly reduce degranulation, histamine secretion and release of IL-4 and IL-13 from RBL-2H3 mast cells. Therefore, the conjugation of SFP to TM led to conformational instability, significantly decreased the IgG-binding capacity and IgE-binding capacity, weakened the allergic responses of TM-stimulated mast cell, and performed in vivo anti-allergic properties in BALB/c mouse model. Therefore, SFP could serve as candidate natural anti-allergic substances to reduce shrimp TM-induced food allergy.


Assuntos
Antialérgicos , Sargassum , Animais , Camundongos , Alérgenos , Tropomiosina , Alimentos Marinhos , Crustáceos , Camundongos Endogâmicos BALB C , Polifenóis , Imunoglobulina E , Imunoglobulina G
7.
J Healthc Eng ; 2022: 9248674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340244

RESUMO

The first reported case of coronavirus disease 2019 (COVID-19) occurred in Wuhan, Hubei, China. Thereafter, it spread through China and worldwide in only a few months, reaching a pandemic level. It can cause severe respiratory illnesses such as pneumonia and lung failure. Since the onset of the disease, the rapid response and intervention of traditional Chinese medicine (TCM) have played a significant role in the effective control of the epidemic. Yinqiaosan (YQS) was used to treat COVID-19 pneumonia, with good curative effects. However, a systematic overview of its active compounds and the therapeutic mechanisms underlying its action has yet to be performed. The purpose of the current study is to explore the compounds and mechanism of YQS in treating COVID-19 pneumonia using system pharmacology. A system pharmacology method involving drug-likeness assessment, oral bioavailability forecasting, virtual docking, and network analysis was applied to estimate the active compounds, hub targets, and key pathways of YQS in the treatment of COVID-19 pneumonia. With this method, 117 active compounds were successfully identified in YQS, and 77 potential targets were obtained from the targets of 95 compounds and COVID-19 pneumonia. The results show that YQS may act in treating COVID-19 pneumonia and its complications (atherosclerosis and nephropathy) through Kaposi sarcoma-related herpesvirus infection and the AGE-RAGE signaling pathway in diabetic complications and pathways in cancer. We distinguished the hub molecular targets within pathways such as TNF, GAPDH, MAPK3, MAPK1, EGFR, CASP3, MAPK8, mTOR, IL-2, and MAPK14. Five of the more highly active compounds (acacetin, kaempferol, luteolin, naringenin, and quercetin) have anti-inflammatory and antioxidative properties. In summary, by introducing a systematic network pharmacology method, our research perfectly forecasts the active compounds, potential targets, and key pathways of YQS applied to COVID-19 and helps to comprehensively clarify its mechanism of action.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Anti-Inflamatórios , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa
8.
Front Pharmacol ; 13: 1042756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793921

RESUMO

Introduction: Cytochrome P450 (CYP) 3A4 is a major drug metabolizing enzyme for corticosteroids (CS). Epimedium has been used for asthma and variety of inflammatory conditions with or without CS. It is unknown whether epimedium has an effect on CYP 3A4 and how it interacts with CS. We sought to determine the effects of epimedium on CYP3A4 and whether it affects the anti-inflammatory function of CS and identify the active compound responsible for this effect. Methods: The effect of epimedium on CYP3A4 activity was evaluated using the Vivid CYP high-throughput screening kit. CYP3A4 mRNA expression was determined in human hepatocyte carcinoma (HepG2) cells with or without epimedium, dexamethasone, rifampin, and ketoconazole. TNF-α levels were determined following co-culture of epimedium with dexamethasone in a murine macrophage cell line (Raw 264.7). Active compound (s) derived from epimedium were tested on IL-8 and TNF-α production with or without corticosteroid, on CYP3A4 function and binding affinity. Results: Epimedium inhibited CYP3A4 activity in a dose-dependent manner. Dexamethasone enhanced the expression of CYP3A4 mRNA, while epimedium inhibited the expression of CYP3A4 mRNA and further suppressed dexamethasone enhancement of CYP3A4 mRNA expression in HepG2 cells (p < 0.05). Epimedium and dexamethasone synergistically suppressed TNF-α production by RAW cells (p < 0.001). Eleven epimedium compounds were screened by TCMSP. Among the compounds identified and tested only kaempferol significantly inhibited IL-8 production in a dose dependent manner without any cell cytotoxicity (p < 0.01). Kaempferol in combination with dexamethasone showed complete elimination of TNF-α production (p < 0.001). Furthermore, kaempferol showed a dose dependent inhibition of CYP3A4 activity. Computer docking analysis showed that kaempferol significantly inhibited the catalytic activity of CYP3A4 with a binding affinity of -44.73kJ/mol. Discussion: Inhibition of CYP3A4 function by epimedium and its active compound kaempferol leads to enhancement of CS anti-inflammatory effect.

9.
Clin Exp Allergy ; 52(2): 250-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757674

RESUMO

BACKGROUND: Excessive production of IgE plays a major role in the pathology of food allergy. In an attempt to identify anti-IgE natural products, Arctium Lappa was one of the most effective herbs among approximately 300 screened medicinal herbs. However, little is known about its anti-IgE compounds. OBJECTIVE: To identify compounds from Arctium Lappa for targeted therapy on IgE production and explore their underlying mechanisms. METHODS: Liquid-liquid extraction and column chromatographic methods were used to purify the compounds. IgE inhibitory effects were determined on IgE-producing human myeloma U266 cells, peanut-allergic murine model and PBMCs from food-allergic patients. Genes involved in IgE inhibition in PBMCs were studied by RNA sequencing. RESULTS: The main compounds isolated were identified as arctiin and arctigenin. Both compounds significantly inhibited IgE production in U266 cells, with arctigenin the most potent (IC50=5.09µg/mL). Arctigenin (at a dose of 13 mg/kg) markedly reduced peanut-specific IgE levels, blocked hypothermia and histamine release in a peanut-allergic mouse model. Arctigenin also significantly reduced IgE production and Th2 cytokines (IL-5, IL-13) by PBMCs. We found 479 differentially expressed genes in PBMCs with arctigenin treatment (p < .001 and fold-change ≥1.5), involving 24 gene ontology terms (p < .001, FDR <0.05); cell division was the most significant. Eleven genes including UBE2C and BCL6 were validated by qPCR. CONCLUSION: Arctigenin markedly inhibited IgE production in U266 cells, peanut-allergic murine model and PBMCs from allergic patients by down-regulating cell division, cell cycle-related genes and up-regulating anti-inflammatory factors.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Animais , Anticorpos Anti-Idiotípicos , Hipersensibilidade Alimentar/tratamento farmacológico , Furanos , Humanos , Lignanas , Camundongos , Hipersensibilidade a Amendoim/tratamento farmacológico , Extratos Vegetais/química , Transcriptoma
10.
Front Immunol ; 13: 1015437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591238

RESUMO

Introduction: Eosinophilic Esophagitis (EoE) is a chronic condition characterized by eosinophilic inflammation of the esophagus which leads to esophageal dysfunction with common symptoms including vomiting, feeding difficulty, dysphagia, abdominal pain. Current main treatment options of EoE include dietary elimination and swallowed steroids. Diet elimination approach could lead to identifying the trigger food(s), but it often requires repeated upper endoscopy with general anesthesia and potentially could negatively affect nutrition intake and growth of the child and individuals' quality of life. Although the swallowed steroid treatment of effective, the EoE will universally recur after discontinuation of the treatment. Digestive Tea formula (DTF) has been used by the Traditional Chinese Medicine (TCM) practice to improve GI symptoms in EoE patients, including abdominal pain, GE reflux, and abnormal bowel movement. Previously, a flavonoid small molecule compound 7, 4 dihydroxy flavone (DHF) from Glycyrrhiza uralensis in DTF inhibited eotaxin, Th2 cytokine and IgE production in vitro and in vivo. Method: This study comprehensively evaluates the potential therapeutic and immunological mechanisms underlying DHF improvement of symptoms related to EoE using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analyses, in silico molecular docking and dynamic simulation followed by ex-vivo target validation by qRT-PCR using cultured human esophagus biopsy specimen with or without DHF from patients with EoE. Results: Computational analyses defined 29 common targets of DHF on EoE, among which TNF-α, IL-6, IL1ß, MAPK1, MAPK3 and AKT1 were most important. Docking analysis and dynamic simulation revealed that DHF directly binds TNF-α with a free binding energy of -7.7 kcal/mol with greater stability and flexibility. Subsequently, in the human esophagus biopsy culture system, significant reduction in levels of TNF-α, IL-6, IL-8 and IL1-ß was found in the supernatant of biopsy sample cultured with DHF. Furthermore, the gene expression profile showed significant reduction in levels of TNF-α, IL1-ß, IL-6, CCND and MAPK1 in the esophagus biopsy sample cultured with DHF. Discussion: Taken together, the current study provides us an insight into the molecular mechanisms underlying multi-targeted benefits of DHF in the treatment of EoE and paves the way for facilitating more effective EoE therapies.


Assuntos
Esofagite Eosinofílica , Criança , Humanos , Dor Abdominal/etiologia , Biópsia , Esofagite Eosinofílica/complicações , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Interleucina-6 , Simulação de Acoplamento Molecular , Qualidade de Vida , Fator de Necrose Tumoral alfa/genética , Perfilação da Expressão Gênica
11.
Front Med (Lausanne) ; 8: 782859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926527

RESUMO

Background: TNF-α has a major role in the pathogenesis of Crohn's disease (CD). In contrast, GM-CSF may be beneficial for its anti-inflammatory role in a subset of patients with CD with antibodies against GM-CSF as seen in prior trials of GM-CSF which resulted in clinical improvement in CD. We developed butanol purified Food Allergy Herbal Formula-2 (B-FAHF-2) by refining FAHF-2. FAHF-2 suppressed TNF-α production by human peripheral blood mononuclear cells (PBMCs) and colonic mucosa, and abrogated colitis in a murine model. We sought to examine the effect of B-FAHF-2 and the herbs that comprise it on TNF-α and GM-CSF production as a potential herbal therapy for the treatment of CD. Methods: B-FAHF-2 was examined using high pressure liquid chromatography (HPLC) and compared to the original formulation, FAHF-2. PBMCs from pediatric patients with CD were cultured with lipopolysaccharide and B-FAHF-2, individual herbs or medium alone. Colonic biopsy specimens were cultured with or without B-FAHF-2. TNF-α and GM-CSF were measured by enzyme-linked immunosorbent assay (ELISA). B-FAHF-2 efficacy was tested in vivo in the CD45Rbhi transfer model. Results: B-FAHF-2 had a similar HPLC fingerprint as FAHF-2 but decreased TNF-α production by PBMCs and colonic mucosa from pediatric CD subjects at 20% of the FAHF-2 dose. B-FAHF-2 increased GM-CSF production by PBMCs and colonic mucosa from pediatric CD subjects including those with antibodies to GM-CSF. Of B-FAHF-2's herbal constituents, only Huang Bai suppressed TNF-α and increased GM-CSF production. In the murine model, B-FAHF-2 treatment alleviated colitis. Conclusions: B-FAHF-2 decreased TNF-α production by PBMCs and colonic mucosa from pediatric subjects at a lower dose than FAHF-2. B-FAHF-2 also increased GM-CSF production by PBMCs independent of antibodies. B-FAHF-2 may have a benefit in CD patients.

12.
Adv Exp Med Biol ; 1350: 33-66, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888843

RESUMO

Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Comunicação Celular , Células Endoteliais , Feminino , Humanos , Imunoterapia , Masculino , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Microambiente Tumoral
13.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5887-5894, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951179

RESUMO

This study aims to explore the mechanism of fresh Phragmitis Rhizoma against chronic bronchitis airway inflammation. The SD rats of SPF grade were divided into control group, model group, Guilongkechuanning group(GLKCN, 1.125 g·kg~(-1)), high-dose fresh Phragmitis Rhizoma group(LG-HD, 15 g·kg~(-1)), and low-dose fresh Phragmitis Rhizoma group(LG-LD, 7.5 g·kg~(-1)). The chronic bronchitis models of rats in other groups except the control group were induced by the modified smoking method. From the 15 th day of modeling, the rats were given corresponding agents by gavage for 20 consecutive days. After the last administration, the rats were sacrificed for sample collection. Enzyme-linked immunosorbent assay(ELISA) was employed to detect serum transforming growth factor-ß(TGF-ß) and interleukin-6(IL-6) levels. The protein expression of TGF-ß, IL-1ß and IL-6 in lung tissue was detected by immunohistochemical method. Masson staining was performed to detect collagen fibers and muscle fibers in lung tissue, and HE staining to detect the pathological changes of lung tissue. Human bronchial epithelial(16 HBE) cells were cultured in vitro, and CCK-8(cell counting kit-8) method was used to detect the cytotoxicity of cigarette smoke extract(CSE) and fresh Phragmitis Rhizoma. After the exposure of 16 HBE cells to 3.5% CSE and appropriate concentration(800, 400 µg·mL~(-1)) of fresh Phragmitis Rhizoma for 24 h, quantitative real-time PCR was conducted to determine the mRNA levels of TGF-ß and IL-1ß, and Western blot was employed to determine the protein levels of TGF-ß and IL-6 in the cells. The rat model of chronic bronchitis induced by smoking was successfully established. Fresh Phragmitis Rhizoma reduced serum TGF-ß and IL-6 levels, down-regulated the protein levels of TGF-ß, IL-1ß, and IL-6 in lung tissue, and alleviated pathological changes and fibrotic lesions in lung tissue. Moreover, it down-regulated the CSE-induced protein expression of TGF-ß and IL-6 as well as the mRNA level of TGF-ß in 16 HBE cells. These results indicated that fresh Phragmitis Rhizoma could prevent airway inflammation from chronic bronchitis and promote cell repair by inhibiting the TGF-ß signaling pathway.


Assuntos
Bronquite Crônica , Medicamentos de Ervas Chinesas/farmacologia , Poaceae/química , Animais , Bronquite Crônica/tratamento farmacológico , Bronquite Crônica/genética , Inflamação , Pulmão , Ratos , Ratos Sprague-Dawley , Rizoma , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
14.
Front Immunol ; 12: 736479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804018

RESUMO

Airway remodeling is associated with dysregulation of epithelial-mesenchymal transition (EMT) in patients with asthma. Sinomenine (Sin) is an effective, biologically active alkaloid that has been reported to suppress airway remodeling in mice with asthma. However, the molecular mechanisms behind this effect remain unclear. We aimed to explore the potential relationship between Sin and EMT in respiratory epithelial cells in vitro and in vivo. First, 16HBE cells were exposed to 100 µg/mL LPS and treated with 200 µg/mL Sin. Cell proliferation, migration, and wound healing assays were performed to evaluate EMT, and EMT-related markers were detected using Western blotting. Mice with OVA-induced asthma were administered 35 mg/kg or 75 mg/kg Sin. Airway inflammation and remodeling detection experiments were performed, and EMT-related factors and proteins in the TGF-ß1 pathway were detected using IHC and Western blotting. We found that Sin suppressed cell migration but not proliferation in LPS-exposed 16HBE cells. Sin also inhibited MMP7, MMP9, and vimentin expression in 16HBE cells and respiratory epithelial cells from mice with asthma. Furthermore, it decreased OVA-specific IgE and IL-4 levels in serum, relieved airway remodeling, attenuated subepithelial collagen deposition, and downregulating TGF-ß1and Smad3 expression in mice with asthma. Our results suggest that Sin suppresses EMT by inhibiting IL-4 and downregulating TGF-ß1 and Smad3 expression.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Morfinanos/farmacologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-4/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-34055023

RESUMO

Eczema is a complex chronic inflammatory skin disease impacted by environmental factors, infections, immune disorders, and deficiencies in skin barrier function. Shi Zhen Tea (SZT), derived from traditional Chinese medicine Xiao-Feng-San, has shown to be an effective integrative therapy for treating skin lesions, itching, and sleeping loss, and it facilitates reduction of topical steroid and antihistamine use in pediatric and adult patients with severe eczema. Yet, its active compounds and therapeutic mechanisms have not been elucidated. In this study, we sought to investigate the active compounds and molecular mechanisms of SZT in treating eczema using systems pharmacology and in silico docking analysis. SZT is composed of 4 medicinal herbs, Baizhu (Atractylodis macrocephalae rhizome), Jingjie (Schizonepetae herba), Kushen (Sophorae flavescentis radix), and Niubangzi (Arctii fructus). We first identified 51 active compounds from SZT and their 81 potential molecular targets by high-throughput computational analysis, from which we identified 4 major pathways including Th17 cell differentiation, metabolic pathways, pathways in cancer, and the PI3K-Akt signaling pathway. Through network analysis of the compound-target pathway, we identified hub molecular targets within these pathways including carbonic anhydrase II (CA2), peroxisome proliferator activated receptor γ (PPAR γ), retinoid X receptor α (RXRA), and vitamin D receptor (VDR). We further identified top 5 compounds including cynarine, stigmasterin, kushenol, ß-sitosterol, and (24S)-24-propylcholesta-5-ene-3ß-ol as putative key active compounds on the basis of their molecular docking scores with identified hub target proteins. Our study provides an insight into the therapeutic mechanism underlying multiscale benefits of SZT for eczema and paves the way for developing new and potentially more effective eczema therapies.

16.
Ann Allergy Asthma Immunol ; 126(6): 639-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33310179

RESUMO

OBJECTIVE: To summarize the recent evidence of traditional Chinese medicine (TCM) for food allergy and eczema. DATA SOURCES: Published literature from PubMed database and abstract conference presentations. STUDY SELECTIONS: Studies relevant to TCM for food allergy and eczema were included. RESULTS: TCM is the main component of complementary and alternative medicine in the United States. Food Allergy Herbal Formula 2 (FAHF-2) (derived from the classical formula Wu Mei Wan) prevented systemic anaphylaxis in murine models and was found to have safety and preliminary immunomodulatory effects on T cells and basophils. The phase II trial of combined TCM with oral immunotherapy and omalizumab for multiple food allergy is ongoing. Retrospective practice-based evidence study revealed that comprehensive TCM therapy effectively prevented frequent and severe food anaphylaxis triggered by skin contact or protein inhalation. The traditional Japanese herbal medicine Kakkonto suppressed allergic diarrhea and decreased mast cells in intestinal mucosa in a murine model. The active compounds from TCM were found to have potent inhibition of immunoglobulin (Ig) E, mast cell activation, and proinflammatory cytokine or signaling pathway (tumor necrosis factor alpha, interleukin 8, NF-κB) suggesting value for both IgE and non-IgE-mediated food allergy. Triple TCM therapy including ingestion, bath, and cream markedly improved skin lesion, itching, and sleep loss in patients with corticosteroid dependent, recalcitrant, or topical steroid withdrawal. Xiao Feng San and Japanese and Korean formulas were found to have effectiveness in eczema. Furthermore, acupuncture reduced wheal size, skin itching, and basophil activation in atopic dermatitis. Moreover, TCM is generally safe. CONCLUSION: TCM has potential as safe and effective therapy for food allergy and eczema. Further research is needed for botanical drug development and to further define the mechanisms of actions. TRIAL REGISTRATION: FAHF-2: https://ichgcp.net/clinical-trials-registry/NCT00602160; ethyl acetate and butanol purified FAHF-2: https://clinicaltrials.gov/ct2/show/NCT02879006.


Assuntos
Eczema/terapia , Hipersensibilidade Alimentar/terapia , Medicina Tradicional Chinesa , Animais , Humanos
17.
Ann Palliat Med ; 9(6): 3742-3749, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33302646

RESUMO

BACKGROUND: Cystic adenomyosis is a particular type of adenomyosis, High intensity focused ultrasound (HIFU), as a non-invasive method, has also been used to treat adenomyosis. The purpose of this study was to investigate the efficacy, safety, and feasibility of HIFU for the treatment of cystic adenomyosis. METHODS: Diagnosis of cystic adenomyosis was obtained through trans-vaginal ultrasound and magnetic resonance imaging (MRI). Ultrasound-guided HIFU ablation was performed under conscious sedation. The patients were evaluated by the comparison of pre-HIFU and post-HIFU imaging, as well as the Uterine Fibroid Symptom and Quality of Life (UFS-QOL) questionnaire subscales, consisting of Symptom Severity Score (SSS) and Heath Related Quality of Life (HRQL). RESULTS: HIFU was effective in treating cystic adenomyosis. No complications were observed in the four patients who were successfully treated with HIFU. Compared to preoperative symptoms and patient satisfaction, symptoms at the first follow-up observed significant improvements, with no dysmenorrhea and high health-related quality of life. During the outpatient follow-up of one month, three months, and six months postoperation, the four patients were still without dysmenorrhea and were highly satisfied with the HIFU ablation. CONCLUSIONS: HIFU, as a non-invasive treatment, supplies a safe and effective possibility for the treatment of cystic adenomyosis.


Assuntos
Adenomiose , Ablação por Ultrassom Focalizado de Alta Intensidade , Leiomioma , Adenomiose/terapia , Feminino , Humanos , Leiomioma/terapia , Qualidade de Vida , Resultado do Tratamento
18.
Food Chem ; 309: 125603, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31707198

RESUMO

Exopalaemon modestus (EM) is a shrimp delicacy that could cause food allergy, the major allergen of EM is Exo m 1. The amino acid (AA) sequence, IgE-binding epitopes and allergenic peptides in gastrointestinal (GI) digests of Exo m 1, and their effects on basophil function were investigated. Exo m 1 has an AA-sequence of high similarity with other shrimp tropomyosins, while not 100% matching. The IgE-binding epitopes of Exo m 1 are epitope 1 (43-59, VHNLQKRMQQLENDLDS), epitope 2 (85-105, VAALNRRIQLLEEDLERSEER), epitope 3 (131-164, ENRSLSDEERMDALENQLKEARFLAEEADRKYDE), epitope 4 (187-201, ESKIVELEEELRVVG) and epitope 5 (243-280, ERSVQKLQKEVDRLEDELVNEKEKYKSITDELDQTFSE). Among the thirty-three peptides of Exo m 1 identified in GI digests, two were highly recognized by IgE, twenty-four moderately or weakly bound IgE, and seven had no IgE-reactivities. These IgE-binding epitopes and GI digestion induced-allergenic peptides could activate basophil degranulation, and CD63 and CD203c expression, they could be potential peptide-based immunotherapy for shrimp allergic individuals.


Assuntos
Alérgenos/imunologia , Epitopos/metabolismo , Palaemonidae/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Tropomiosina/imunologia , Adulto , Alérgenos/química , Alérgenos/metabolismo , Animais , Basófilos/imunologia , Criança , Pré-Escolar , Mapeamento de Epitopos , Epitopos/química , Feminino , Água Doce , Humanos , Imunoglobulina E/metabolismo , Lactente , Masculino , Peptídeos/química , Peptídeos/imunologia , Homologia de Sequência de Aminoácidos , Tropomiosina/química , Tropomiosina/metabolismo
19.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618892

RESUMO

Icariin is a prenylated flavonol glycoside isolated from Epimedium herb, and has been shown to be its main bioactive component. Recently, the antidepressant-like mechanism of icariin has been increasingly evaluated and demonstrated. However, there are few studies that have focused on the involvement of the phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase (AKT) signaling in mediating the perimenopausal depression effects of icariin. Perimenopausal depression is a chronic recurrent disease that leads to an increased risk of suicide, and poses a significant risk to public health. The aim of the present study was to explore the effect of icariin on the expression of the PI3K-AKT pathway related to proteins in a rat model of perimenopausal depression. Eighty percent of the left ovary and the entire right ovary were removed from the model rats. A perimenopausal depression model was created through 18 days of chronic unpredictable stimulation, followed by the gavage administration of target drugs for 30 consecutive days. We found that icariin administered at various doses significantly improved the apparent symptoms in the model rats, increased the organ indices of the uterus, spleen, and thymus, and improved the pathological changes in the ovaries. Moreover, icariin administration elevated the serum levels of female hormone estradiol (E2), testosterone (T), and interleukin (IL)-2, decreased those of follicle stimulating hormone (FSH) and luteotropic hormone (LH), promoted the expression levels of estrogen receptor (ER) and ERα in the hypothalamus, and increased those of serotonin (5-HT), dopamine (DA), and noradrenaline (NA) in the brain homogenate. Furthermore, icariin elevated the expression levels of AKT, phosphorylation-akt (p-AKT), PI3K (110 kDa), PI3K (85 kDa), and B-cell lymphoma 2 (Bcl-2) in the ovaries, and inhibited those of Bax. These results show that icariin administration rebalanced the disordered sex hormones in perimenopausal depression rats, regulated the secretion of neurotransmitters in the brain, boosted immune function, and improved the perimenopausal syndrome. The mechanism of action may be related to the regulation of the expression of PI3K-AKT pathway-related proteins.


Assuntos
Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal , Biomarcadores , Depressão/etiologia , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Feminino , Ovário/metabolismo , Perimenopausa/psicologia , Ratos , Receptores de Estrogênio/metabolismo
20.
J Ethnopharmacol ; 238: 111884, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30995546

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Desertliving Cistanche herb was first recorded in "Shen Nong'Herbal Classic" and listed as the top grade herbal medicine in it. Phenylethanoid glycosides are indicative components for identification and content determination of Desertliving Cistanche herb in Chinese pharmacopoeia, which is also one of the main active components. In this research, we explored the mechanism of phenylethanoid glycosides of Desertliving Cistanche herb to the perimenopausal model rats. AIM: The purpose of this study is to research the effects of phenylethanoid glycosides of Desertliving Cistanche herb (PGC) on the neuroendocrine-immune function of perimenopausal syndrome by perimenopausal model rats. MATERIALS AND METHODS: Wistar female rats were selected. The left ovaries for all rats except in the blank control group(BC) were removed, and the right ovaries were removed in 80%. The vaginal smear showed irregular estrous cycle changes for the perimenopausal model rats. And the perimenopausal model rats were gavaged Gengnian'an, Phenylethanoid Glycosides of Desertliving Cistanche herb high, medium, low suspension which is 450mg/(kg day), 133.33mg/(kg day), 66.67mg/(kg day), 33.33mg/(kg day); the group of BC and model group (MC)were given distilled water in the same volume as the drugs group for 30 consecutive days. Horizontal-vertical exercise scores were measured at 29 days of dosing. After the last administration, the blood was taken from the abdominal aorta, and levels of E2, LH, FSH, GnRH, BGP in serum, and the levels ß-EP in plasma were measured respective. Organ indexes of thymus, spleen, and uterus were calculated. The content of estrogen receptor (ER) in the hypothalamic, pituitary and uterus tissues and the content of androgen receptor (AR) in the hypothalamic homogenate were measured. The pathological changes of the thymus, spleen, uterus, ovary were observed by HE staining. RESULTS: Compared with MC, PGC increase the activity, the organ index (thymus, spleen, uterus), E2, T, BGP level in serum, ß-EP level in plasma, AR level in hypothalamus, ER level in hypothalamus, pituitary, uterus in perimenopausal model rats. And it also reduced FSH, LH, GnRH level in serum, and improved uterine and ovarian lesions in perimenopausal model rats. CONCLUSION: Each dose of PCG could counteract the disorder of sex hormone in perimenopausal model rats, correct the imbalance of ER and AR level, enhance and restore the effect of uterus and the nerve cells of hypothalamic, and improve immune function.


Assuntos
Envelhecimento/fisiologia , Cistanche/química , Glicosídeos/farmacologia , Animais , Feminino , Glicosídeos/química , Plantas Medicinais , Ratos , Ratos Wistar , Fenômenos Reprodutivos Fisiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA