Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Food Chem ; 456: 139996, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38925008

RESUMO

This study was aimed to evaluate the potential of high-humidity hot air impingement cooking (HHAIC) on Penaeus vannamei, focusing on its drying characteristics, microstructure, water distribution, enzyme activity, astaxanthin content, antioxidant capacity, color, and Maillard reaction. Results demonstrated that a 3 min HHAIC significantly improved the shrimp's color and optimized astaxanthin content with a notable increase in scavenging capacity based on an in-vitro as antioxidation activity evaluation. Compared to the untreated samples, HHAIC could significantly inactivate polyphenol oxidase by 95.76%. Also, it suppressed the Maillard reaction by decreasing 5-hydroxymethylfurfural content and shortened the drying time by 40%. In addition, the low-field nuclear magnetic resonance and microstructure analysis showed alterations in the shrimp muscle fiber structure and water distribution. This study indicated that HHAIC could elevate quality, enhance appearance, and reduce the processing time of dried shrimp, presenting valuable implications for industry progress.


Assuntos
Cor , Culinária , Temperatura Alta , Reação de Maillard , Penaeidae , Animais , Penaeidae/química , Penaeidae/enzimologia , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Dessecação , Frutos do Mar/análise , Antioxidantes/química , Xantofilas/química
2.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872574

RESUMO

BACKGROUND: The effect of oleogels prepared with peanut oil and different concentrations of γ-oryzanol and ß-sitosterol mixture (γ/ß; 20, 40, 60, 80 and 100 g kg-1) on the physicochemical and gel properties of myofibrillar protein (MP) was investigated. RESULTS: The solubility and average particle size of MP first decreased and then increased with increasing γ/ß concentration. Peanut oil or oleogels could induce the exposure of hydrophobic amino acids and the unfolding of MP, thus significantly increasing the surface hydrophobicity, sulfhydryl content and absolute value of zeta potential, which reached maximum values when the γ/ß concentration was 60 g kg-1 (P < 0.05). The addition of peanut oil decreased the gel strength and water holding capacity of MP gel. However, oleogels prepared with 60 g kg-1 γ/ß could significantly increase the hydrophobic interactions and disulfide bond content of MP gel (P < 0.05), which promoted the crosslinking and aggregation of MP, enhancing the gel properties. Peanut oil had no significant influence on the secondary structure of MP, while oleogels promoted the transition of MP conformation from α-helix to ß-sheet structure. The results of light microscopy and confocal laser scanning microscopy indicated that oleogels prepared with 60 g kg-1 γ/ß filled in the pores of MP gel network to form denser and more uniform structure. CONCLUSION: Oleogels prepared with 60 g kg-1 γ/ß could effectively improve the quality of MP gel and have promising application prospects in surimi products. © 2024 Society of Chemical Industry.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38676833

RESUMO

Intervertebral disc degeneration (IVDD) is the primary cause of low back pain. Stem cell transplantation may be a possible approach to promote IVDD. This study was aimed to investigate the role of bone mesenchymal stem cells (BMSCs) in IVDD and the molecular mechanism. Annulus fibrosus cells (AFCs) were treated with tert-butyl hydroperoxide (TBHP) to induce oxidative stress injury. AFC biological functions were analyzed using a lactate dehydrogenase kit, enzyme-linked immunosorbent assay, flow cytometry, and western blot. The molecular mechanisms of BMSC functions were assessed using quantitative real-time PCR, western blot, immunoprecipitation (IP), co-IP, GST pull-down, and cycloheximide treatment. Furthermore, the impacts of BMSCs in IVDD progression in vivo were evaluated by magnetic resonance imaging (MRI) and H&E analysis. BMSCs inhibited TBHP-induced inflammation and pyroptosis in AFCs. Knockdown of SIRT1 reversed the effects on inflammation and pyroptosis of BMSCs. Moreover, SIRT1 promoted the deacetylation of ASC rather than NLRP3. SIRT1 interacted with ASC to reduce its protein stability, thereby negatively regulating ASC protein levels. In addition, BMSCs alleviated LPS-induced IVDD based on matrix hydrogels. BMSCs inhibited oxidative stress-induced pyroptosis and inflammation in AFCs, thereby alleviating IVDD, suggesting that BMSCs may contribute to treating intervertebral disc generation.

4.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642689

RESUMO

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.


Assuntos
Amilose , Emulsões , Géis , Óleo de Amendoim , Amido , Amilose/química , Amilose/análise , Óleo de Amendoim/química , Amido/química , Géis/química , Emulsões/química , Proteínas Musculares/química , Fenômenos Químicos , Solubilidade , Miofibrilas/química
5.
Biochem Biophys Res Commun ; 710: 149863, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579535

RESUMO

Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Calcificação Vascular/genética , Macrófagos , Osteogênese , Fenótipo , Miócitos de Músculo Liso
6.
Food Funct ; 15(3): 1655-1670, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251410

RESUMO

The effects of fish oil (FO) and Bacillus subtilis jzxj-7 (JZXJ-7) on the colonic physiology, bacteria, metabolites, and gene expressions were studied in C57BL/6J mice. Co-administration of FO and JZXJ-7 was more beneficial than individual supplementation, as evidenced by improved growth performance, enhanced colon crypt depth and goblet cell numbers. FO + JZXJ-7 inhibited colonic fibrosis by downregulating fibrosis marker protein expression and upregulating occludin, claudin-2 and claudin-4 gene expressions. FO + JZXJ-7 ameliorated oxidative stress and inflammation by increasing catalase, superoxide dismutase, total anti-oxidation capacity, and reducing colon tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 levels. Mechanistically, FO + JZXJ-7 modulated the colon micro-ecological environment by enriching Roseburia, Lachnospiraceae NK4B4, Faecalibaculum and Lactococcus and its derived short-chain fatty acids, and activating Ppara and Car1 mediated peroxisome proliferators-activated receptor (PPAR) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling. Overall, FO + JZXJ-7 may serve as a promising nutraceutical to improve health by boosting the growth of colonic beneficial bacteria, altering metabolic phenotype, and regulating gene expression.


Assuntos
Óleos de Peixe , Microbiota , Camundongos , Animais , Óleos de Peixe/farmacologia , Bacillus subtilis , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa , Perfilação da Expressão Gênica , Metaboloma , Fibrose
7.
PLoS One ; 19(1): e0295346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181024

RESUMO

The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/tratamento farmacológico , Glioma/genética , Imunoterapia , Biologia Computacional , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas Nucleares
8.
Food Chem ; 442: 138369, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232615

RESUMO

This study investigated the impact of magnetic nanoparticles (MNPs) -assisted cryogenic freezing integrated with MNPs combined microwave thawing (NNMT) on the structural integrity of myofibrillar proteins and alterations in protein profiles in salmon fillets. The NNMT showed the lowest myofibrillar fragmentation index (MFI) value (2.73 ± 0.31) among the four freezing-thawing groups. The myofibrillar structure exhibited the highest level of integrity, while the myofibrillar proteins demonstrated minimal aggregation and displayed the most stable secondary and tertiary structures in response to NNMT treatment. Compared with the other three treatments, NNMT exhibited a high abundance of ionic and hydrogen bonds, resulting in stronger interactions between the proteins and water molecules. The label-free proteomics analysis revealed that different freezing-thawing methods primarily affected the cytoskeletal proteins, with collagen and myosin being down-regulated due to degradation caused by cold stress and recrystallization. Additionally, NNMT demonstrated a superior capability in stabilizing salmon cytoskeletal proteins.


Assuntos
Salmo salar , Animais , Congelamento , Proteômica , Proteínas , Miosinas
9.
Fish Shellfish Immunol ; 145: 109325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154762

RESUMO

Interleukin-20 (IL-20), as an essential member of IL-10 family, plays vital roles in mammalian immunological response such as antimicrobial, inflammation, hematopoiesis, and immune diseases. In teleost, the study about immune antimicrobial function of IL-20 is largely scarce. In this article, we revealed the expression profiles and the immunological functions of the IL-20 (CsIL-20) in tongue sole Cynoglossus semilaevis. CsIL-20 is composed of 183 amino acid residues, with seven cysteine residues and a typical IL-10 domain which comprises six α-helices and two ß-sheets, and shares 34.4-71.2 % identities with other teleost IL-20. CsIL-20 was constitutively expressed in a variety of tissues and regulated by bacterial invasion, and the recombinant CsIL-20 (rCsIL-20) could bind to different bacteria. In vitro rCsIL-20 could interact with the membrane of peripheral blood leukocytes (PBLs), leading to the attenuation of reactive oxygen species (ROS) production and acid phosphatase activity in PBLs. In line with In vitro results, In vivo rCsIL-20 could obviously suppressed the host immune against bacterial infection. Furthermore, knockdown of CsIL-20 in vivo could markedly enhance the host antibacterial immunity. Collectively, these observations offer new insights into the negative effect of CsIL-20 on antibacterial immunity.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Linguados , Interleucinas , Animais , Interleucina-10 , Sequência de Aminoácidos , Proteínas de Peixes , Leucócitos/metabolismo , Bactérias/metabolismo , Antibacterianos , Peixes/metabolismo , Mamíferos/metabolismo
10.
Food Funct ; 14(14): 6624-6635, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395469

RESUMO

Polyphenols could inhibit the freezing-induced denaturation of myosin, and affect its nutritional and functional properties, which have rarely been studied to date. Therefore, the effects of interactions between polyphenols and myosin after freezing on myosin gel and digestive properties were investigated using low field NMR, a texture analyzer, a dynamic rheometer, ultraviolet-visible spectra, scanning electron microscopy, LC-MS/MS, an automatic amino acid analyzer, etc. Hesperetin (HE), dihydroquercetin (DI), salidroside (SA), and mangiferin (MA) increased the water-holding capacity, non-flowable water content, gel strength, texture, storage modulus, and fractal dimensions of the myosin gel, while modifying its leading force. The results of scanning electron microscopy revealed that the surfaces of polyphenol groups were relatively smoother than those of the control group. Meanwhile, the four types of polyphenols under study significantly improved the gastric and gastrointestinal digestibility of myosin. Furthermore, they significantly increased the contents of essential, flavor, and total free amino acids, as well as the unique peptide numbers in myosin digestion products. This work provides reliable guidance for polyphenols to improve protein function and nutritional properties.


Assuntos
Penaeidae , Polifenóis , Animais , Polifenóis/química , Congelamento , Penaeidae/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Miosinas/química , Água
11.
Medicine (Baltimore) ; 102(23): e33935, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37335645

RESUMO

Gliomas have a high incidence rate in central nervous tumors. Although many breakthroughs have been made in the pathogenesis and treatment of glioma, the recurrence and metastasis rates of patients have not been improved based on the uniqueness of glioma. Glioma destroys the surrounding basement membrane (BM), leading to local infiltration, resulting in the corresponding clinical and neurological symptoms. Therefore, exploring the biological roles played by BM associated genes in glioma is particularly necessary for a comprehensive understanding of the biological processes of glioma and its treatment. Differential expression and univariate COX regression analyses were used to identify the basement membrane genes (BMGs) to be included in the model. LASSO regression was used to construct the BMG model. The Kaplan-Meier (KM) survival analysis model was used to assess the prognosis discrimination between training sets, validation sets, and clinical subgroups. Receiver-operating characteristic (ROC) analysis was used to test the prognostic efficacy of the model. Use calibration curves to verify the accuracy of nomograms. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA) were used to analyze the function and pathway enrichment among the model groups. ESTIMATE and other 7 algorithms including CIBERSORT were used to evaluate the immune microenvironment. "pRRophetic" was used to evaluate drug sensitivity. This study demonstrated that high-risk genes (LAMB4, MMP1, MMP7) promote glioma progression and negatively correlate with patient prognosis. In the tumor microenvironment (TME), high-risk genes have increased scores of macrophages, neutrophils, immune checkpoints, chemokines, and chemokine receptors. This study suggests that BMGs, especially high-risk-related genes, are potential sites for glioma therapy, a new prospect for comprehensively understanding the molecular mechanism of glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Nomogramas , Algoritmos , Membrana Basal , Microambiente Tumoral/genética
12.
J Food Sci ; 88(7): 3007-3021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37248780

RESUMO

The synergistic effects of the combination of ultrahigh pressure (UHP) with allicin on the gel properties, flavor characteristics, and myosin structure of scallops were investigated. The results indicated that chewiness reached maximum, uniform, and dense microstructures at B-300 MPa, and scallops with favorable gel properties. In addition, the electronic nose and tongue could clearly distinguish the olfactory and gustatory properties of scallops, and the interaction of UHP and allicin increased the variety of volatile compounds in scallops, which mainly included 1-hydroxy-2-propanone, 1-hexenal, 2-butanone-D, and 1-octen-3-ol. The main performance was fruit aroma and a plantlike aroma and mushroomlike odor. UHP and allicin changed the microenvironment of tryptophan residues, and allicin formed larger aggregates by forming disulfides with myosin. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis results could show that myosin had low degradation in B-300 MPa. Thus, comprehensively viewed, UHP and allicin play a role in gel formation of myosin from obturator muscle at 300 MPa, whereas allicin and myosin form disulfides as the main factor of myosin gelation. PRACTICAL APPLICATION: To enhance the diversity of scallop preparation methods and improve the quality of the obtained product, UHP and allicin treatment result in scallops with satisfactory chewiness and flavor, which provides application prospects for scallop processing.


Assuntos
Pectinidae , Animais , Pectinidae/química , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Dissulfetos
13.
J Agric Food Chem ; 71(18): 6920-6934, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126589

RESUMO

The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.


Assuntos
Microbioma Gastrointestinal , Homeostase , Vibrioses , Vibrio parahaemolyticus , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Óleos de Peixe/farmacologia , Homeostase/efeitos dos fármacos , Vibrioses/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma , Mucosa Gástrica/metabolismo
14.
Food Chem ; 417: 135821, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934711

RESUMO

The effects of different amount (0-12%) of chickpea protein-stabilized Pickering emulsion (CPE) on the gelling properties, intermolecular interactions, microstructure, and physicochemical stability of hairtail fish myosin gels were investigated. The myosin gel with 6%-9% CPE demonstrated significantly higher viscoelasticity, gel strength, hardness, water-holding capacity and whiteness, compared to the control (P < 0.05). In addition, Raman spectroscopy showed that CPE changed the microenvironment of the myosin, which promoted the changes in protein secondary structures, disulfide bond conformation and the local environments of the composite gels. The addition of 6%-9% CPE also enhanced the disulfide bond and hydrophobic interaction of myosin gels which induced more compact gel network structures. Furthermore, CPE improved the lipid oxidative stability and freeze-thaw stability of myosin gel. The results indicated that CPE could improve the gelling properties of myosin, making it a potential new additive and lipid substitute for the development of new emulsion gel products.


Assuntos
Cicer , Animais , Emulsões/química , Géis/química , Miosinas , Dissulfetos , Lipídeos
15.
Ultrason Sonochem ; 93: 106299, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652814

RESUMO

To study the physicochemical properties of micro-nanoparticles (MNPs) in thermoultrasonic treated fishbone soup, it was subjected to ultra-filtration with a 100 kDa ultrafiltration membrane to obtain large MNPs (LMNPs) and small MNPs (SMNPs). LMNPs and SMNPs were treated with force-breakers, and the interactions of the MNPs with five characteristic volatile compounds were investigated. LMNPs covered most proteins (222.66 mg/mL) and fatty acids (363.76 mg/g), while SMNPs was mostly soluble small molecules with taste substances like total free amino acids (85.26 mg/g), organic acids (2.55 mg/mL), and 5'-nucleotides (169.17 mg/100 mL). The stability of LMNPs is significantly higher than raw bone soup, and SMNPs can exist stably in the solution. Correlation analysis between flavor substance content and flavor suggested that the overall flavor profile of halibut bone soup was closely related to the content changes of 72 significant influence variables. The binding of LMNPs to characteristic flavor compounds was largely affected by hydrophobic interactions, hydrogen bonds, and ionic effects. While the binding of SMNPs to characteristic flavor compounds was largely determined by hydrophobic interaction and hydrogen bonding. This study explores the characteristics of MNPs and provides the possibility to clarify the interaction mechanism between MNPs and flavor.


Assuntos
Nanopartículas , Paladar , Odorantes/análise , Alimentos Marinhos/análise , Aminoácidos/análise
16.
Food Funct ; 14(3): 1510-1519, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651848

RESUMO

Umami peptides have currently become the research focus in the food umami science field and the key direction for umami agent development. This is because umami peptides have good processing characteristics, umami and nutritional values. We here used virtual screening (including online enzymolysis through ExPASy PeptideCutter, bioactivity screening using the PeptideRanker, toxicity and physicochemical property prediction using Innovagen and ToxinPred software), molecular docking, and electronic tongue analysis to identify umami peptides generated from Atlantic cod myosin. Twenty-three putative umami peptides were screened from the myosin. Molecular docking results suggested that these 23 peptides could enter the binding pocket in the T1R3 cavity, wherein Glu128 and Asp196 were the main amino acid residues, and that hydrogen bonding and electrostatic interactions were the main binding forces. Twelve synthetic peptides tested on the electronic tongue exhibited umami taste and a synergistic effect with monosodium glutamate (MSG). Among them, GGR, AGCD, and SGDAW had higher umami intensities than the other peptides, while SGDAW and NDDGW exhibited stronger umami-enhancing capabilities in 0.1% MSG solution. This study offers a method for the rapid screening of umami peptides from marine protein resources and places the foundation for their application in the food industry.


Assuntos
Gadus morhua , Animais , Simulação de Acoplamento Molecular , Gadus morhua/metabolismo , Glutamato de Sódio/química , Peptídeos/química , Paladar , Receptores Acoplados a Proteínas G/metabolismo
17.
Food Funct ; 14(1): 160-170, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477011

RESUMO

We identified novel antioxidant peptides from Pacific saury (Cololabis saira). Enzymatic hydrolysates were isolated, purified, and identified by ultrafiltration, gel chromatography, reverse phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). Twenty putative peptides were identified from five components of HPLC, among which sixteen peptides were predicted to have good water solubility and non-toxicity by online tools. Fifteen peptides were successfully docked with myeloperoxidase, and we observed that Arg31, Arg323, and Lys505 played a key role in the antioxidant mechanism, with van der Waals forces and conventional hydrogen bonds as important interaction forces. Six identified peptides with lower CDOCKER energy values were synthesized to verify the antioxidant activity, and the results showed that the synthetic peptide QQAAGDKIMK displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate (31.05 ± 0.27%) and reducing power (0.29 ± 0.01). The synthetic peptide KDEPDQASSK at a concentration of 300 µg mL-1 exhibited the strongest protective effects on H2O2-induced oxidative damage of HEK-293 cells, with cell viability and ROS level of 0.38 ± 0.03 and 0.08 ± 0.01, respectively.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/química , Peróxido de Hidrogênio/toxicidade , Simulação de Acoplamento Molecular , Células HEK293 , Peptídeos/química , Estresse Oxidativo
18.
Food Chem ; 402: 134325, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174352

RESUMO

Electronic nose (E-nose), electronic tongue (E-tongue) and colorimeter combined with data fusion strategy and different machine learning algorithms (artificial neural network, ANN; extreme gradient boosting, XGBoost; random forest regression, RFR; support vector regression, SVR) were applied to quantitatively assess and predict the freshness of horse mackerel (Trachurus japonicus) during the 90-day frozen storage. The results showed that the fusion data of the E-nose, E-tongue and colorimeter could contain more information (with a total variance contribution rate of 94.734 %) than that of the independent one. ANN, RFR and XGBoost showed good performance in predicting biochemical indexes with the RP2 (the square correlation coefficient of the Test set) ≥ 0.929, 0.936, 0.888, respectively, while SVR models showed a bad performance (RP2 ≤ 0.835). In addition, among the established quantitative models, the RFR model had the best prediction effect on K value (freshness index) with Rp2 of 0.936, ANN model had the highest fitting degree in predicting carbonyl content (protein oxidation degree) with Rp2 of 0.978, XGBoost model had the best performance in predicting the TBA value (lipid oxidation degree) with Rp2 of 0.994, RFR model was the best strategy for predicting Ca2+-ATPase activity (protein denaturation degree) with Rp2 of 0.969. The results demonstrated that the freshness of frozen fish can be effectively evaluated and predicted by the combination of electronic sensor fusion signals.


Assuntos
Nariz Eletrônico , Perciformes , Animais , Peixes , Língua , Lipídeos , Adenosina Trifosfatases
19.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201066

RESUMO

This review summarizes current studies on fermented vegetables, analyzing the changes in nutritional components during pickling, the health benefits of fermented vegetables, and their safety concerns. Additionally, the review provides an overview of the applications of emergent non-thermal technologies for addressing these safety concerns during the production and processing of fermented vegetables. It was found that vitamin C would commonly be lost, the soluble protein would degrade into free amino acids, new nutrient compositions would be produced, and the flavor correlated with the chemical changes. These changes would be influenced by the variety/location of raw materials, the original bacterial population, starter cultures, fermentation conditions, seasoning additions, and post-fermentation processing. Consuming fermented vegetables benefits human health, including antibacterial effects, regulating intestinal bacterial populations, and promoting health (anti-cancer effects, anti-diabetes effects, and immune regulation). However, fermented vegetables have chemical and biological safety concerns, such as biogenic amines and the formation of nitrites, as well as the existence of pathogenic microorganisms. To reduce hazardous components and control the quality of fermented vegetables, unique starter cultures, high pressure, ultrasound, cold plasma, photodynamic, and other technologies can be used to solve these problems.

20.
Front Genet ; 13: 956632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186425

RESUMO

Guanylate binding protein 2 (GBP2) is a member of the guanine binding protein family, and its relationship with prognostic outcomes and tumor immune microenvironments in glioma remains elusive. We found GBP2 were increased in glioma tissues at both mRNA and protein levels. Kaplan-Meier curves revealed that high GBP2 expression was linked with worse survival of glioma patients, and multivariate Cox regression analysis indicated that high GBP2 expression was an independent prognostic factor for glioma. Combined analysis in immune database revealed that the expression of GBP2 was significantly related to the level of immune infiltration and immunomodulators. Single-cell analysis illustrated the high expression of GBP2 in malignant glioma cells showed the high antigen presentation capability, which were confirmed by real-time polymerase chain reaction (qRT-PCR) data. Additionally, the hsa-mir-26b-5p and hsa-mir-335-5p were predicted as GBP2 regulators and were validated in U87 and U251 cells. Our results first decipher immune-related characteristics and noncoding regulators of GBP2 in glioma, which may provide insights into associated immunotherapies and prognostic predictor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA