Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130936, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493811

RESUMO

Packaging materials with peculiar antibacterial properties can shield off and inhibit microorganism proliferation, thus achieving packaging goals such as fresh-keeping, good hygiene, and biosafety. Especially, antibacterial films made of biocompatible substances have received wide attentions, which could effectively extend the shelf life, enhance food security, and guarantee economic benefits. Herein, a self-supporting hybrid antibacterial film was prepared based on non-covalently linked choline hydroxide (ChOH) and alginic acid (HAlg). Then tannic acid (TA) and silver ions were added to improve the mechanical and antimicrobial properties of this hybrid film. The rich hydroxyl groups from TA not only form multiple hydrogen bonds with ChAlg, but can also in situ reduce silver ions to silver nanoparticles, which were confirmed with various characterizations. In addition, the quantitative antibacterial test proved that the antibacterial rate was significantly improved after adding silver ions, reaching >60 %. In an actual storage test, we found that choline cation (Ch+) captured in antibacterial film by electrostatic interaction could achieve sustained release, i.e. sustainable bacteriostasis, and keep strawberries fresh for 48 h at room temperature. This work offers a new strategy for preparing antibacterial films via non-covalent weak interactions, explored an alternative antibacterial film for food packaging applications.


Assuntos
Fragaria , Nanopartículas Metálicas , Polifenóis , Prata/química , Nanopartículas Metálicas/química , Alginatos , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Íons
2.
Chembiochem ; 24(19): e202300424, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37470220

RESUMO

Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.


Assuntos
Antineoplásicos , Nanopartículas , Paclitaxel/farmacologia , Paclitaxel/química , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina , Liberação Controlada de Fármacos , DNA , Portadores de Fármacos/química , Linhagem Celular Tumoral , Nanopartículas/química
3.
Adv Healthc Mater ; 11(21): e2201023, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058004

RESUMO

The intimate relationship between bacteria and tumors has triggered a lot of activities in the development and design of bioactive materials to concurrently respond to antitumor and antibacterial demands. Herein, a pseudocatalytic hydrogel (AM-I@Agar) with intrinsic antibacterial and photothermal activities, synthesized by incorporating prefabricated amylose-iodine nanoparticles into low-melting-point agarose hydrogel, is explored as a bioactive agent for local treatment of subcutaneous abscesses and breast tumors. The AM-I@Agar hydrogel depicts the ability of pseudocatalytic O2 generation from H2 O2 to alleviate hypoxia. Meanwhile, the AM-I@Agar hydrogel exhibits temperature self-regulation features, beneficial for avoiding thermal injury during photothermal therapy owing to thermochromic properties. Upon local injection into a subcutaneous abscess, methicillin-resistant Staphylococcus aureus is effectively eliminated by the AM-I@Agar hydrogel, and complete skin recovery is achieved in 8 d, demonstrating much better antibacterial effects compared with penicillin, a small-molecule antibiotic. AM-I/5-FU@Agar hydrogel, obtained after loading 5-fluorouracil (5-FU), significantly inhibits tumors in both normal 4T1 tumor-bearing mice and MRSA-infected 4T1 tumor-bearing mice models via a synergistic photothermal-chemo effect, and shows treatment efficiency superior to that achieved with photothermal therapy or 5-FU alone. This work provides a concept for the design and development of bioactive agents for potential management of bacteria-associated cancer.


Assuntos
Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Hidrogéis/farmacologia , Fototerapia , Abscesso , Ágar , Antibacterianos/farmacologia , Fluoruracila
4.
Adv Mater ; 32(26): e2002024, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32431015

RESUMO

Finding the best applications of graphene, and the continuous and scalable preparation of graphene with high quality and high purity, are still two major challenges. Herein, a "pulse-etched" microwave-induced "snowing" (PEMIS) process is developed for continuous and scalable preparation of high-quality and high-purity graphene directly in the gas phase, which is found to have excellent thermotherapeutic effects. The obtained graphene exhibits small size (≈180 nm), high quality, low oxygen content, and high purity, together with a high gas-solid conversion efficiency of ≈10.46%. Considering the intrinsic characteristics of this high-purity and small-sized biocompatible graphene, in particular the low-frequency microwave absorption property as well as the good thermal transformation ability, a graphene-based combination therapeutic system is demonstrated for microwave thermal therapy (MTT) for the first time, exhibiting a high tumor ablation rate of ≈86.7%. This is different from the principle of ions vibrating in a confined space used by current MTT sensitization materials. Not limited to this application, it is foreseen that this PEMIS-based high-quality graphene will allow the search for further suitable applications of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA