RESUMO
In this study, to improve the electrical properties and impact strength of phenolic formaldehyde (PF) resin, PF-based composites were prepared by mixing graphene and the ionic liquid 3-decyl-bis(1-vinyl-1H-imidazole-3-ium-bromide) (C10[VImBr]2) via hot blending and compression-curing processes. The graphene surface was modified using a silane coupling agent. The synergistic effect of graphene and C10[VImBr]2 on the electrical properties, electromagnetic shielding efficiency, thermal stability, impact strength, and morphology of PF/graphene and PF/graphene/C10[VImBr]2 composites was then investigated. It was found that the electrical conductivity of the composites significantly increased from 2.3 × 10-10 to 4.14 × 10-3 S/m with an increase in the graphene content from 0 to 15 wt %, increasing further to 0.145 S/m with the addition of 5 wt % C10[VImBr]2. The electromagnetic shielding efficiency of the composite increased from 4.70 to 28.64 dB with the addition of 15 wt % graphene, while the impact strength of the composites rose significantly from 0.59 to 1.13 kJ/m2 with an increase in the graphene content from 0 to 15 wt %, reaching 1.53 kJ/m2 with the addition of 5 wt % C10[VImBr]2. Scanning electron microscopy images of the PF/GNP/C10[VImBr]2 composites revealed a rough morphology with numerous microcracks.
RESUMO
We demonstrated direct conversion of benzene into pyridine and aniline, assisted through exact mass measurements (m/z 80.0494, 93.0574, and 94.0651, respectively), through the interaction of benzene with water/nitrogen vapor plasma produced by corona discharge. Systematic analysis using a series of isotopic standards indicated that formation of pyridine and aniline occurred through the reaction between neutral benzene and reactive N+(OH2)2 in water/nitrogen plasma; exact mass measurements of products and intermediates supported this hypothesis. As the proportion of water vapor in plasma increased over time, the reaction proceeded from exclusive formation of protonated pyridine to formation of protonated aniline as the main product; theoretical simulations indicated that the presence of water vapor promoted proton migration to elicit formation of protonated aniline. The reactions we discovered suggest a new mechanism for direct nitrogen fixation.
RESUMO
Gut epithelial morphogenesis is maintained by intestinal stem cells. Here, we report that depletion of N6-adenosine methyltransferase subunit Mettl14 from gut epithelial cells in mice impaired colon mucosal morphogenesis, leading to increased mucosal permeability, severe inflammation, growth retardation, and premature death. Mettl14 ablation triggered apoptosis that depleted Lgr5+ stem cells and disrupted colonic organoid growth and differentiation, whereas the inhibition of apoptosis rescued Mettl14-deleted mice and organoids. Mettl14 depletion disrupted N6-adenomethylation on GsdmC transcripts and abolished GsdmC expression. Reconstitution of Mettl14-deleted organoids or mice with GSDMC rescued Lgr5 expression and prevented apoptosis and mouse premature death, whereas GSDMC silence eliminated LGR5 and triggered apoptosis in human colonic organoids and epithelial cells. Mechanistically, Mettl14 depletion eliminated mitochondrial GsdmC, disrupted mitochondrial membrane potential, and triggered cytochrome c release that activates the pro-apoptotic pathway. In conclusion, GsdmC N6-adenomethylation protects mitochondrial homeostasis and is essential for Lgr5+ cell survival to maintain normal colonic epithelial regeneration.
Assuntos
Receptores Acoplados a Proteínas G , Células-Tronco , Animais , Humanos , Camundongos , Biomarcadores Tumorais , Sobrevivência Celular , Colo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Morfogênese , Organoides , Proteínas Citotóxicas Formadoras de Poros , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Background: High serum uric acid (SUA) levels increase the risk of overall cancer morbidity and mortality, particularly for digestive malignancies. Nevertheless, the correlation between SUA level and clinical outcomes of the postoperative patients with colorectal cancer (CRC) treated by chemotherapy is unclear. This study aimed at exploring the relationship between baseline SUA level and progression-free survival (PFS), disease control rate (DCR), and safety in postoperative CRC patients receiving chemotherapy. Patients and Methods: We conducted a retrospective study to evaluate the relationship between baseline SUA level and PFS, DCR, and incidence of serious adverse events of 736 postoperative CRC patients treated with FOLFOX, FOLFIRI or XELOX at our center. Results: Data from our center suggested that high baseline SUA level is linked to poor PFS in non-metastatic CRC patients using FOLFOX (HR=2.59, 95%CI: 1.29-11.31, p=0.018) and in male patients using FOLFIRI (HR=3.77, 95%CI: 1.57-39.49, p=0.012). In patients treated by FOLFIRI, a high SUA is also linked to a low DCR (p=0.035). In patients using FOLFOX, high baseline SUA level is also linked to a high incidence of neutropenia (p=0.0037). For patients using XELOX, there is no significant correlation between SUA level and PFS, effectiveness, or safety. Conclusions: These findings imply that a high SUA level is a promising biomarker associated with poor PFS, DCR and safety of postoperative CRC patients when treated with FOLFOX or FOLFIRI.
RESUMO
Here, we report on the abundant formation of phenol and molecular hydrogen when benzene vapor was exposed to gas plasma generated by +5.5 kV corona discharge of water vapor in argon in the absence of oxygen. Systematic analysis using a series of isotopic standards (d6-benzene, D2O, and H218O) and benzene derivatives (mono-, di-, trichlorobenzene, and N,N-dimethylaniline) indicated that the formation of phenol occurred through the reaction between neutral benzene and the radical cation of water dimer, (H2O)2+â¢. A two-step reaction mechanism was proposed based on the results of experiments and DFT calculations: (1) the formation of (C6H6...H2O)+⢠intermediate through electrophilic addition; (2) the formation of C6H5OH+⢠through the release of H2 from the (C6H6...H2O)+⢠intermediate. Our findings offer a novel catalyst-free method to prepare phenol from benzene with phenol selectivity >90%.
RESUMO
Macrophages are key innate immune cells involved in a broad spectrum of physiological and pathological processes. Macrophage depletion with clodronate-liposomes is commonly used to investigate in vivo functions of macrophages in mice. Here, we describe a protocol that combines the depletion of resident macrophages with the reconstitution of the mice with in vitro differentiated, lentivirus-transduced bone marrow-derived macrophages (BMDMs) in the context of an experimental sepsis model. This experimental strategy is easily adapted to other experimental designs. For complete details on the use and execution of this protocol, please refer to Du et al. (2020).
Assuntos
Modelos Animais de Doenças , Macrófagos , Sepse/imunologia , Animais , Diferenciação Celular , Terapia de Imunossupressão , Lentivirus/genética , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/transplante , CamundongosRESUMO
Gyroporus species with cyanescent oxidation reactions were investigated, based on morphology and phylogenetic analysis of DNA sequences from the nuclear ribosomal large subunit (nrLSU), the nuclear ribosomal internal transcribed spacer (ITS) and the mitochondrial adenosine triphosphate ATP synthase subunit 6 (atp6). Three species, including two new species, namely G. alpinus and G. flavocyanescens and one previously-described species, namely G. brunneofloccosus, are revealed from China. Collections formerly reported from China as "G. cyanescens" are either G. alpinus or G. flavocyanescens. The new species are documented and illustrated in detail, while the concept of G. brunneofloccosus is refined with additional recently-collected materials. Additionally, the cyanescent species G. pseudomicrosporus, previously described from China, is shown to be a member of the genus Gyrodon, based on re-examination of the type specimen. A key to the cyanescent Gyroporus species from China is provided.
RESUMO
BACKGROUND: Liver cancer is one of the most common malignant tumors, and ranks as the fourth leading cause of cancer death worldwide. Microvascular invasion (MVI) is considered one of the most important factors for recurrence and poor prognosis of liver cancer. Thus, accurately identifying MVI before surgery is of great importance in making treatment strategies and predicting the prognosis of patients with hepatocellular carcinoma (HCC). Radiomics as an emerging field, aims to utilize artificial intelligence software to develop methods that may contribute to cancer diagnosis, treatment improvement and evaluation, and better prediction. AIM: To investigate the predictive value of computed tomography radiomics for MVI in solitary HCC ≤ 5 cm. METHODS: A total of 185 HCC patients, including 122 MVI negative and 63 MVI positive patients, were retrospectively analyzed. All patients were randomly assigned to the training group (n = 124) and validation group (n = 61). A total of 1351 radiomic features were extracted based on three-dimensional images. The diagnostic performance of the radiomics model was verified in the validation group, and the Delong test was applied to compare the radiomics and MVI-related imaging features (two-trait predictor of venous invasion and radiogenomic invasion). RESULTS: A total of ten radiomics features were finally obtained after screening 1531 features. According to the weighting coefficient that corresponded to the features, the radiomics score (RS) calculation formula was obtained, and the RS score of each patient was calculated. The radiomics model exhibited a better correction and identification ability in the training and validation groups [area under the curve: 0.72 (95% confidence interval: 0.58-0.86) and 0.74 (95% confidence interval: 0.66-0.83), respectively]. Its prediction performance was significantly higher than that of the image features (P < 0.05). CONCLUSION: Computed tomography radiomics has certain predictive value for MVI in solitary HCC ≤ 5 cm, and the predictive ability is higher than that of image features.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inteligência Artificial , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Invasividade Neoplásica , Recidiva Local de Neoplasia , Estudos RetrospectivosRESUMO
Because ADAM17 promotes colonic tumorigenesis, we investigated potential miRNAs regulating ADAM17; and examined effects of diet and tumorigenesis on these miRNAs. We also examined pre-miRNA processing and tumour suppressor roles of several of these miRNAs in experimental colon cancer. Using TargetScan, miR-145, miR-148a, and miR-152 were predicted to regulate ADAM17. miR-143 was also investigated as miR-143 and miR-145 are co-transcribed and associated with decreased tumour growth. HCT116 colon cancer cells (CCC) were co-transfected with predicted ADAM17-regulating miRNAs and luciferase reporters controlled by ADAM17-3'UTR. Separately, pre-miR-143 processing by colonic cells was measured. miRNAs were quantified by RT-PCR. Tumours were induced with AOM/DSS in WT and transgenic mice (Tg) expressing pre-miR-143/miR-145 under villin promoter. HCT116 transfection with miR-145, -148a or -152, but not scrambled miRNA inhibited ADAM17 expression and luciferase activity. The latter was suppressed by mutations in ADAM17-3'UTR. Lysates from colonocytes, but not CCC, processed pre-miR-143 and mixing experiments suggested CCC lacked a competency factor. Colonic miR-143, miR-145, miR-148a, and miR-152 were downregulated in tumours and more moderately by feeding mice a Western diet. Tg mice were resistant to DSS colitis and had significantly lower cancer incidence and tumour multiplicity. Tg expression blocked up-regulation of putative targets of miR-143 and miR-145, including ADAM17, K-Ras, XPO5, and SET. miR-145, miR-148a, and miR-152 directly suppress colonocyte ADAM17 and are down-regulated in colon cancer. This is the first direct demonstration of tumour suppressor roles for miR-143 and miR-145 in an in vivo model of colonic tumorigenesis.
Assuntos
Colite , Neoplasias do Colo , MicroRNAs , Animais , Neoplasias do Colo/genética , Metilação de DNA , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação , Carioferinas , Camundongos , MicroRNAs/metabolismo , Regulação para CimaRESUMO
Bacterial infection triggers a cytokine storm that needs to be resolved to maintain the host's wellbeing. Here, we report that ablation of m6A methyltransferase subunit METTL14 in myeloid cells exacerbates macrophage responses to acute bacterial infection in mice, leading to high mortality due to sustained production of pro-inflammatory cytokines. METTL14 depletion blunts Socs1 m6A methylation and reduces YTHDF1 binding to the m6A sites, which diminishes SOCS1 induction leading to the overactivation of TLR4/NF-κB signaling. Forced expression of SOCS1 in macrophages depleted of METTL14 or YTHDF1 rescues the hyper-responsive phenotype of these macrophages in vitro and in vivo. We further show that LPS treatment induces Socs1 m6A methylation and sustains SOCS1 induction by promoting Fto mRNA degradation, and forced FTO expression in macrophages mimics the phenotype of METTL14-depleted macrophages. We conclude that m6A methylation-mediated SOCS1 induction is required to maintain the negative feedback control of macrophage activation in response to bacterial infection.
Assuntos
Adenosina/análogos & derivados , Ativação de Macrófagos , Metiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Células Cultivadas , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 4 Toll-Like/metabolismo , Tristetraprolina/metabolismo , Regulação para CimaRESUMO
Vitamin D (VD) deficiency is prevalent among aging people and Alzheimer's disease (AD) patients. However, the roles of VD deficiency in the pathology of AD remain largely unexplored. In this study, APP/PS1 mice were fed a VD-deficient diet for 13 weeks to evaluate the effects of VD deficiency on the learning and memory functions and the neuropathological characteristics of the mice. Our study revealed that VD deficiency accelerated cognitive impairment in the APP/PS1 mice. Mechanistic studies revealed that VD deficiency promoted glial activation and increased inflammatory factor secretion. Furthermore, VD deficiency increased the production and deposition of Aß by elevating the expression levels of amyloid precursor protein (APP) and ß-site APP cleavage enzyme 1 (BACE1). In addition, VD deficiency increased the phosphorylation of Tau at Thr181, Thr205 and Ser396 by increasing the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3α/ß (GSK3α/ß) and promoted synaptic dystrophy and neuronal loss. All these effects of VD deficiency may be ascribed to enhanced oxidative stress via the downregulation of superoxide dismutase 1 (SOD1), glutathione peroxidase 4 (GPx4) and cystine/glutamate exchanger (xCT). Taken together, our data suggest that VD deficiency exacerbates Alzheimer-like pathologies via promoting inflammatory stress, increasing Aß production and elevating Tau phosphorylation by decreasing antioxidant capacity in the brains of APP/PS1 mice. Hence, rescuing the VD status of AD patients should be taken into consideration during the treatment of AD.
Assuntos
Doença de Alzheimer , Deficiência de Vitamina D , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Antioxidantes , Ácido Aspártico Endopeptidases , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Presenilina-1 , Proteínas tau/genéticaRESUMO
BACKGROUND: Cortical dopaminergic systems are critically involved in prefrontal cortex (PFC) functions, especially in working memory and neurodevelopmental disorders such as schizophrenia. GSK-3ß (glycogen synthase kinase-3ß) is highly associated with cAMP (cyclic adenosine monophosphate)-independent dopamine D2 receptor (D2R)-mediated signaling to affect dopamine-dependent behaviors. However, the mechanisms underlying the GSK-3ß modulation of cognitive function via D2Rs remains unclear. METHODS: This study explored how conditional cell-type-specific ablation of GSK-3ß in D2R+ neurons (D2R-GSK-3ß-/-) in the brain affects synaptic function in the medial PFC (mPFC). Both male and female (postnatal days 60-90) mice, including 140 D2R, 24 D1R, and 38 DISC1 mice, were used. RESULTS: This study found that NMDA receptor (NMDAR) function was significantly increased in layer V pyramidal neurons in mPFC of D2R-GSK-3ß-/- mice, along with increased dopamine modulation of NMDAR-mediated current. Consistently, NR2A and NR2B protein levels were elevated in mPFC of D2R-GSK-3ß-/- mice. This change was accompanied by a significant increase in enrichment of activator histone mark H3K27ac at the promoters of both Grin2a and Grin2b genes. In addition, altered short- and long-term synaptic plasticity, along with an increased spine density in layer V pyramidal neurons, were detected in D2R-GSK-3ß-/- mice. Indeed, D2R-GSK-3ß-/- mice also exhibited a resistance of working memory impairment induced by injection of NMDAR antagonist MK-801. Notably, either inhibiting GSK-3ß or disrupting the D2R-DISC1 complex was able to reverse the mutant DISC1-induced decrease of NMDAR-mediated currents in the mPFC. CONCLUSIONS: This study demonstrates that GSK-3ß modulates cognition via D2R-DISC1 interaction and epigenetic regulation of NMDAR expression and function.
Assuntos
Disfunção Cognitiva , Receptores de N-Metil-D-Aspartato , Animais , Epigênese Genética , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
OBJECTIVES: As a screening index of diabetic kidney disease (DKD), urinary albumin/creatine ratio (UACR) is commonly used. However, approximately 23.3%-56.6% of DKD patients with estimated glomerular filtration rate (eGFR) < 60 ml/min per 1.73 m2 are normoalbuminuric. Thus, urinary biomarkers of nonalbuminuric renal insufficiency in type 2 diabetes mellitus (T2DM) patients are urgently needed. METHODS: This cross-sectional study enrolled 209 T2DM patients with normoalbuminuria whose diabetes duration was more than 5 years. The patients were classified into two groups, NO-CKD (eGFR ≥ 60 ml/min per 1.73 m2, n = 165) and NA-DKD (eGFR < 60 ml/min per 1.73 m2, n = 44). Levels of urinary neutrophil gelatinase-associated lipocalin (NGAL), retinol-binding protein (RBP), plasminogen activator inhibitor-1 (PAI-1), vascular cell adhesion molecule-1 (VCAM-1), and E-cadherin were detected, and their correlations with eGFR, plasma TNF-α, IL-6, endothelin-1 (ET-1), and 8-hydroxydeoxyguanosine (8-OHdG) were assessed. RESULTS: Among patients with renal insufficiency, 26.0% was normoalbuminuric. Compared to the NO-CKD group, the NA-DKD group was older with lower hemoglobin (HB) levels and higher systolic blood pressure (SBP), plasma TNF-α, IL-6, and 8-OHdG levels. Logistic regression analysis suggested that age, TNF-α, and 8-OHdG were independent risk factors for nonalbuminuric renal insufficiency. Compared to the NO-CKD group, the NA-DKD group exhibited significant increases in urinary NGAL and RBP levels but not PAI-1, VCAM-1, and E-cadherin. Urinary NGAL and RBP both correlated negatively with eGFR and positively with plasma IL-6 and 8-OHdG. Multiple linear regression indicated NGAL (ß = -0.287, p = 0.008) and RBP (ß = -44.545, p < 0.001) were independently correlated with eGFR. CONCLUSION: Age, plasma TNF-α, and 8-OHdG are independent risk factors for renal insufficiency in T2DM patients with normoalbuminuria. Urinary NGAL and RBP can serve as noninvasive biomarkers of normoalbuminuric renal insufficiency in T2DM.
Assuntos
Albuminúria/metabolismo , Biomarcadores/urina , Diabetes Mellitus Tipo 2/fisiopatologia , Lipocalina-2/urina , Insuficiência Renal/urina , Proteínas de Ligação ao Retinol/urina , Idoso , Nefropatias Diabéticas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Diets high in animal fats are associated with increased risks of inflammatory bowel disease, but the mechanism remains unclear. In this study, we investigated the effect of high-fat diet (HFD) on the development of experimental colitis in mice. Relative to mice fed low-fat diet (LFD), HFD feeding for 4 wk increased the levels of triglyceride, cholesterol, and free fatty acids in the plasma as well as within the colonic mucosa. In an experimental colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS), mice on 4-wk HFD exhibited more severe colonic inflammation and developed more severe colitis compared with the LFD counterparts. HFD feeding resulted in higher production of mucosal pro-inflammatory cytokines, greater activation of the myosin light chain kinase (MLCK) tight junction regulatory pathway, and greater increases in mucosal barrier permeability in mice following TNBS induction. HFD feeding also induced gp91, an NADPH oxidase subunit, and promoted reactive oxygen species (ROS) production in both colonic epithelial cells and lamina propria cells. In HCT116 cell culture, palmitic acid or palmitic acid and TNF-α combination markedly increased ROS production and induced the MLCK pathway, and these effects were markedly diminished in the presence of a ROS scavenger. Taken together, these data suggest that HFD promotes colitis by aggravating mucosal oxidative stress, which rapidly drives mucosal inflammation and increases intestinal mucosal barrier permeability.NEW & NOTEWORTHY This study demonstrates high-fat diet feeding promotes colitis in a 2,4,6-trinitrobenzenesulfonic acid-induced experimental colitis model in mice. The underlying mechanism is that high-fat diet induces oxidative stress in the colonic mucosa, which increases colonic epithelial barrier permeability and drives colonic mucosal inflammation. These observations provide molecular evidence that diets high in saturated fats are detrimental to patients with inflammatory bowel diseases.
Assuntos
Colite/metabolismo , Colite/patologia , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Animais , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Colite/induzido quimicamente , Colo/citologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Ácido TrinitrobenzenossulfônicoRESUMO
OBJECTIVE: Systemic lupus erythematosus (SLE) is characterized by uncontrolled production of pro-inflammatory cytokines. Vitamin D receptor (VDR) has potent anti-inflammatory activities. The aim of this study was to examine the correlation between VDR expression and inflammation and disease activity in patients with SLE. METHODS: Ninety-five SLE patients were recruited and divided into two groups, active and inactive, according to their SLE disease activity index (SLEDAI)-2 K, and 40 healthy individuals served as controls. The expression of VDR and NF-κB p65 in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR and Western blotting. VDR expression was correlated with inflammatory and diseases parameters in SLE patients. VDR regulation was also studied in THP-1 and Jurkat cell lines. RESULTS: PBMC VDR expression was downregulated in SLE patients, especially in the active SLE group. VDR mRNA levels were negatively correlated with SLEDAI-2 K (r = - 0.348, P = 0.001), Systemic Lupus International Collaborating Clinics (SLICC) renal activity scores (r = - 0.346, P = 0.014), and proteinuria (r = - 0.309, P = 0.002) and positively associated with serum complement C3 levels (r = 0.316, P = 0.002). Multiple stepwise regression analysis indicated that PBMC VDR downregulation was an independent risk factor for SLEDAI-2 K. VDR levels were also negatively correlated with NF-κB p65 (r = - 0.339, P = 0.001), TNF-α (r = - 0.268, P = 0.009), and IL-6 (r = - 0.313, P = 0.002) levels. In monocyte and T lymphocyte cell lines, TNF-α suppressed VDR expression, whereas 1,25-dihydroxyvitamin D blocked TNF-α-induced VDR downregulation. CONCLUSION: PBMC VDR expression is inversely associated with disease activity and inflammation in SLE patients, and VDR downregulation is likely driven by inflammation.
Assuntos
Regulação para Baixo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores de Calcitriol/metabolismo , Adulto , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Rim/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Adulto JovemRESUMO
Colorectal cancer is a leading cause of cancer deaths. The renin-angiotensin system (RAS) is upregulated in colorectal cancer, and epidemiologic studies suggest RAS inhibitors reduce cancer risk. Because vitamin D (VD) receptor negatively regulates renin, we examined anticancer efficacy of VD and losartan (L), an angiotensin receptor blocker. Control Apc+/LoxP mice and tumor-forming Apc+/LoxP Cdx2P-Cre mice were randomized to unsupplemented Western diet (UN), or diets supplemented with VD, L, or VD+L, the latter to assess additive or synergistic effects. At 6 months, mice were killed. Plasma Ca2+, 25(OH)D3, 1α, 25(OH)2D3, renin, and angiotensin II (Ang II) were quantified. Colonic transcripts were assessed by qPCR and proteins by immunostaining and blotting. Cancer incidence and tumor burden were significantly lower in Cre+ VD and Cre+ L, but not in the Cre+ VD+L group. In Apc+/LoxP mice, VD increased plasma 1,25(OH)2D3 and colonic VDR. In Apc+/LoxP-Cdx2P-Cre mice, plasma renin and Ang II, and colonic tumor AT1, AT2, and Cyp27B1 were increased and VDR downregulated. L increased, whereas VD decreased plasma renin and Ang II in Cre+ mice. VD or L inhibited tumor development, while exerting differential effects on plasma VD metabolites and RAS components. We speculate that AT1 is critical for tumor development, whereas RAS suppression plays a key role in VD chemoprevention. When combined with L, VD no longer increases active VD and colonic VDR in Cre- mice nor suppresses renin and Ang II in Cre+ mice, likely contributing to lack of chemopreventive efficacy of the combination.
Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Neoplasias do Colo/prevenção & controle , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Losartan/farmacologia , Vitamina D/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Células Tumorais Cultivadas , Vitaminas/farmacologiaRESUMO
Previous studies suggest that the renin-angiotensin system (RAS) is a pathogenic factor for colitis. The goal of this study was to elucidate the molecular mechanism whereby angiotensin II (ANG II) promotes colonic inflammation. We found that renin was highly induced in colonic biopsies from patients with ulcerative colitis or Crohn's disease, and colonic renin and ANG II levels were markedly increased in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, indicating that the colonic RAS is activated in colitis. Renin transgenic (RenTg) mice exhibited increased phosphorylation in Janus kinase-2 (JAK2) and signal transducer and activator of transcription1/3 (STAT1/3) within colonic mucosa at baseline and following TNBS induction, suggesting that ANG II promotes colonic inflammation via the JAK2/STAT1/3 pathway. Treatment with pan-JAK inhibitor tofacitinib blocked JAK2 and STAT1/3 phosphorylation, attenuated T helper (TH)1 and TH17 responses, alleviated colitis, and prevented death of RenTg mice in TNBS model. ANG II stimulated JAK2/STAT1/3 phosphorylation in both Jurkat T lymphocytes and HCT116 epithelial cells. In vitro polarization assays demonstrated that ANG II directly promoted TH17 polarization, but not TH1 polarization, via JAK2/STAT1/3. ANG II stimulation of transforming growth factor-ß1 (TGFß1), IL-6, myosin light chain kinase, and p53 upregulated modulator of apoptosis in HCT116 cells was also mediated by JAK2/STAT1/3. These observations suggest that ANG II promotes TH17 polarization directly as well as indirectly by inducing production of TH17-polarizing cytokines (e.g., TGFß1 and IL-6) from colonic epithelial cells, both via the JAK2/STAT pathway. Therefore, colonic RAS promotes colonic inflammation, at least in part, by stimulating TH17 activation. NEW & NOTEWORTHY This study demonstrates that the local renin-angiotensin system in the colon is activated in colitis development, which promotes mucosal T helper cell activation through the JAK2/STAT pathway. These observations provide molecular evidence that the renin-angiotensin system is a pathogenic factor for the development of inflammatory bowel diseases.
Assuntos
Colite Ulcerativa , Colo , Doença de Crohn , Ativação Linfocitária , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Células Th17/fisiologia , Angiotensina II/metabolismo , Animais , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Humanos , Janus Quinase 2/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sistema Renina-Angiotensina/fisiologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
Acute kidney injury (AKI) is a common complication of sepsis characterized by a rapid degradation of renal function. The effect of vitamin D on AKI remains poorly understood. Here, we showed that vitamin D receptor (VDR) activation protects against lipopolysaccharide (LPS)-induced AKI by blocking renal tubular epithelial cell apoptosis. Mice lacking VDR developed more severe AKI than wild-type (WT) control mice after LPS treatment, which was manifested by marked increases in body weight loss and accumulation of serum blood urea nitrogen and creatinine as well as the magnitude of apoptosis of tubular epithelial cells. In the renal cortex, LPS treatment led to more dramatic downregulation of Bcl-2, more robust induction of p53-upregulated modulator of apoptosis (PUMA) and miR-155, and more severe caspase-3 activation in VDR knockout mice compared with WT control mice. Conversely, paricalcitol pretreatment markedly prevented LPS-induced AKI. Paricalcitol ameliorated body weight loss, attenuated serum blood urea nitrogen and creatinine accumulation, blocked tubular cell apoptosis, prevented the suppression of Bcl-2, and reversed PUMA and miR-155 induction and caspase-3 activation in LPS-treated WT mice. In HK2 cells, LPS induced PUMA and miR-155 by activating NF-κB, whereas 1,25(OH)2D3 blocked PUMA and miR-155 induction by repressing NF-κB activation. Both PUMA and miR-155 target Bcl-2 to promote apoptosis; namely, PUMA inhibits Bcl-2 activity, whereas miR-155 promotes Bcl-2 mRNA degradation and inhibits Bcl-2 protein translation. Collectively, these data provide strong evidence that LPS induces tubular cell apoptosis via upregulating PUMA and miR-155, whereas vitamin D/VDR signaling protects against AKI by blocking NF-κB-mediated PUMA and miR-155 upregulation.
Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Ergocalciferóis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Lipopolissacarídeos , Receptores de Calcitriol/agonistas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células RAW 264.7 , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismoRESUMO
BACKGROUND AND AIMS: As ulcerative colitis [UC]-associated colorectal cancer [CRC] and sporadic CRC differ in presentation and molecular features, we sought to evaluate differences in the impact of DNA methylation on gene expression. METHODS: DNA methylation was assessed in 11 UC-CRCs and adjacent tissue and 11 sporadic CRCs and adjacent tissue, using Illumina arrays. RNA sequencing was performed on 10 UC-CRCs and adjacent tissue and eight sporadic CRCs and adjacent tissues. Differences in DNA methylation and transcript expression, as well as their correlation in the same tissues, were assessed. Immunohistochemistry was performed for three proteins, ANPEP, FAM92A1, and STK31, all of which exhibited an inverse correlation between DNA methylation and transcript expression in UC. RESULTS: Thirty three loci demonstrated differences in DNA methylation between UC-CRC and adjacent tissue. In contrast, there were 4204 differentially methylated loci between sporadic colon cancer and adjacent tissue. Eight hundred eighty six genes as well as 10 long non-coding RNAs [lncRNA] were differentially expressed between UC-CRC and adjacent tissues. Although there were no differentially methylated loci between UC and sporadic CRC, 997 genes and 38 lncRNAs were differentially expressed between UC-CRC and sporadic CRC. In UC, 18 genes demonstrated a negative correlation between DNA methylation and transcript expression. Evaluation of protein expression related to three genes, ANPEP, FAM92A1, and STK31, confirmed down-regulation of ANPEP and up-regulation of STK31 in UC-CRC. CONCLUSIONS: Regulation of transcript expression by DNA methylation involves genes key to colon carcinogenesis and may account for differences in presentation and outcomes between inflammatory bowel disease and sporadic colon cancer.
Assuntos
Neoplasias do Colo/genética , Metilação de DNA , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Preclinical data demonstrate that activation of the renin-angiotensin system (RAS) contributes to mucosal inflammation, and RAS inhibition by angiotensin-converting-enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) improves colitis in animal models. Less is known regarding the effects of RAS inhibition on clinical outcomes in inflammatory bowel disease (IBD) patients. AIM: Evaluate the impact of ACEI and ARB on clinical outcomes in IBD. METHODS: Rates of IBD-related hospitalizations, operations, and corticosteroid use were evaluated retrospectively in two groups. First, 111 IBD patients taking an ACEI or ARB were compared to nonusers matched 1:1 based on sex, age, diagnosis, disease location, and hypertension diagnosis. Second, outcomes in a cohort of 130 IBD patients were compared prior to and during ACEI/ARB exposure. RESULTS: Compared to matched controls, all IBD patients together with ACEI/ARB exposure had fewer hospitalizations (OR 0.26, p < 0.01), operations (OR 0.08, p = 0.02), and corticosteroid prescriptions (OR 0.5, p = 0.01). Comparing outcomes before and during ACEI/ARB use, there were no differences in hospitalizations, operations, or corticosteroid use for all IBD patients together, but patients with UC had increased hospitalizations (0.08 pre- vs. 0.16 during ACEI/ARB exposure, p = 0.03) and decreased corticosteroid use (0.24 pre-ACEI/ARB vs. 0.12 during ACEI/ARB exposure, p < 0.01) during ACEI/ARB use. CONCLUSIONS: IBD patients with ACEI/ARB exposure had fewer hospitalizations, operations, and corticosteroid use compared to matched controls. No differences in outcomes were observed in individuals on ACEI/ARB therapy when compared to a period of time prior to medication exposure.