Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Anal Chim Acta ; 1309: 342699, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772652

RESUMO

Extracellular vesicles (EVs) are cell-released, nucleus-free particles with a double-membrane structure that effectively prevents degradation of internal components by a variety of salivary enzymes. Saliva is an easily accessible biofluid that contains a wealth of valuable information for disease diagnosis and monitoring and especially reflect respiratory and digestive tract diseases. However, the lack of efficient and high-throughput methods for proteomic analysis of salivary biomarkers poses a significant challenge. Herein, we designed a salivary EV amphiphile-dendrimer supramolecular probe (SEASP) array which enables efficient enrichment and in situ detection of EVs protein biomarkers. Detergent Tween-20 washing of SEASP arrays removes high abundance of heteroproteins from saliva well. This array shows good analytical performance in the linear range of 10 µL-150 µL (LOD = 0.4 µg protein, or 10 µL saliva), exhibiting a good recovery (80.0 %). Compared to ultracentrifugation (UC), this procedure provides simple and convenient access to high-purity EVs (1.3 × 109 particles per mg protein) with good physiological status and structure. Coupling with mass spectrometry based proteomic analysis, differentially expressed proteins as selected asthma biomarkers have been screened. Then, we validated the proteomics primary screening results through clinical samples (100 µL each) using the SEASP array. Utilizing the dual antibody fluorescence technology, SEASP enables the simultaneous high-throughput detection of two proteins. Therefore, the EVs marker protein CD81 could be used as an internal standard to normalize the number of EVs, which was stably expressed in EVs. Proteomics and array results suggested that HNRNPU (P = 4.9 * 10-6) and MUC5B (P = 4.7 * 10-11) are promising protein biomarkers for infantile asthma. HNRNPU and MUC5B may be associated with disease onset and subtypes. The SEASP arrays provide a significant advancement in the field of salivary biomarker. The array enables high-throughput in situ protein detection for highly viscous and complex biological samples. It provides a rapid, low-cost, highly specific screening procedure and experimental basis for early disease screening and diagnosis in the field of liquid biopsy.


Assuntos
Vesículas Extracelulares , Proteômica , Saliva , Saliva/química , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Biomarcadores/análise , Ensaios de Triagem em Larga Escala , Asma/diagnóstico , Asma/metabolismo
3.
Comput Struct Biotechnol J ; 23: 1897-1911, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721587

RESUMO

Background: In recent years, mRNA-based vaccines with promising safety and functional characteristics have gained significant momentum in cancer immunotherapy. However, stable immunological molecular subtypes of lung adenocarcinoma (LUAD) and novel tumor antigens for LUAD mRNA vaccine development remain elusive. Therefore, a novel approach is urgently needed to identify suitable LUAD subtypes and potential tumor antigens. Methods: The Cancer Genome Atlas (TCGA), the Genotype Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases were utilized to retrieve gene expression data. The LUAD Immunological Multi-Omics Classification (LIMOC) system was developed using seven machine learning (ML) algorithms by performing integrative immunogenomic analysis of single-cell and bulk tissue transcriptome profiling. Subsequently, a panel of approaches was applied to identify novel tumor antigens. Results: First, the LIMOC system was construct to identify three subtypes: LIMOC1, LIMOC2, and LIMOC3. Second, we identified CHIT1, LILRA4, and MEP1A as novel tumor antigens in LUAD; these genes were up-regulated, amplified, and mutated, and showed a positive association with APC infiltration, making them promising candidates for designing mRNA vaccines. Notably, the LIMOC2 subtype had the worst prognosis and could benefit most from mRNA immunization. Furthermore, we performed a comprehensive in silico screening of approximately 2000 compounds and identified Sorafenib and Azacitidine as potential subtype-specific therapeutic agents. Conclusions: Overall, our study established a robust LIMOC system and identified CHIT1, LILRA4, and MEP1A as promising tumor antigen candidates for development of anti-LUAD mRNA vaccines, particularly for the LIMOC2 subtype.

4.
J Pain Res ; 17: 1651-1661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736679

RESUMO

Purpose: Patients undergoing arthroscopic hip surgery (AHS) require good analgesia and early rehabilitation after surgery, and there is no consensus on the optimal nerve block. We aimed to compare the efficacy of the pericapsular nerve group (PENG) block with lateral femoral cutaneous nerve (LFCN) block compared to fascia iliaca compartment block (FICB) in patients with AHS. Patients and Methods: A total of 80 patients receiving AHS under general anesthesia were randomized to receive either FICB (group F) or PENG block in combination with LFCN block (group P). The primary outcomes were the rate of quadriceps weakness after block on the afflicted side, as well as muscle strength grading and pain score after block, and the quality of recovery on the second postoperative day. Results: Compared with group F, group P had a lower incidence of quadriceps weakness 48 h after block (76.9% vs 28.2%, P < 0.001), and had less impact on muscle strength grade and lower static pain score at 6, 12, 18, 24, 36, and 48 h after block (P < 0.001), and a lower dynamic pain score at 6 and 12 h after block in group P (p < 0.05). The quality of recovery on the second postoperative day improved (p < 0.05). Conclusion: In comparison to FICB, PENG block in combination with LFCN block can affect less quadriceps muscle strength and reduce the use of postoperative analgesics, which is beneficial for the postoperative recovery of AHS patients.

5.
Am J Cancer Res ; 14(4): 1730-1746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726271

RESUMO

Increasing research has shown that the abnormal expression of circRNAs is closely related to tumorigenesis, apoptosis, and patient prognosis in cervical cancer. This study aimed to reveal the procancer role of circIL21R in cervical cancer and investigate its related molecular mechanisms. Bioinformatics analysis revealed that circIL21R promotes the progression of cervical cancer via the miR-1205/PTBP1 axis. CircIL21R expression was significantly greater in tumor tissue than in adjacent normal tissue, and higher circIL21R expression indicated shorter survival. We applied MTS assays, EdU assays, and Transwell assays to show that the overexpression of circIL21R promoted cervical cancer cell proliferation and invasion. Mechanistically, circIL21R promoted the expression of PTBP1 by sponging miR-1205. Moreover, rescue assays confirmed that regulating the expression of miR-1205 or PTBP1 could reverse the tumorigenic effect caused by circIL21R overexpression. In addition, circIL21R promoted the tumorigenesis of cervical cancer in vivo. In summary, our study demonstrated that circIL21R was highly expressed in cervical cancer and upregulated PTBP1 expression by acting as a ceRNA for miR-1205, making outstanding contributions to several malignant biological processes in cervical cancers, such as growth, proliferation, and invasion. CircIL21R is a potential biomarker for the diagnosis and treatment of cervical cancer.

6.
World Neurosurg ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692571

RESUMO

OBJECTIVE: To quantitatively investigate the longitudinal computed tomography perfusion (CTP) imaging in meningiomas preoperatively embolized using microcatheters. METHODS: This retrospective monocentric study included 27 patients with symptomatic supratentorial meningiomas. Quantitative computed tomography perfusion (CTP) images before and postembolization were evaluated and correlated with angiographic, immunohistochemical, and clinical data. RESULTS: The mean age of the patients was 45 ± 18 years, with a female-to-male ratio of 1.45:1. After embolization, both the embolized (Eb) and unembolized (UEb) regions showed hypoperfusion. A steady state was achieved on days 4-6 postembolization, during which differences in regional cerebral blood volume (rCBV) (Eb 0.5 ± 0.3 ml/100 mg, UEb 3.3 ± 1.4 ml/100 mg; P < 0.05), and mean transit time (MTT) (Eb 3.5 ± 1.8 s, UEb 3.1 ± 0.4 s) were observed. The cerebral blood flow (rCBF) and time to the peak (TTP) exhibited opposite patterns between Eb and UEb. A steady state was reached in rCBF (Eb 1.7 ± 1.2 ml/100 g/min, UEb 30 ± 5.4 ml/100 g/min; P < 0.01), and TTP (Eb 5 ± 4.8 s, UEb 1.8 ± 1.5 s; P < 0.01) within 4 to 6 days. Estimated blood loss (EBL) showed significant association with the surgical time interval among the 3 groups (P < 0.05). Tissue necrosis predominated over 7 days postembolization, indicating a correlation with the devascularization process. The overall incidence of postembolized headache, seizures, extremity weakness/paralysis, and postoperational headache was 11.1%, 7.4%, 3.7%; and 7.4%, respectively. All symptoms resolved by the last follow-up (3 months). CONCLUSION: Preoperative embolization of meningiomas using N-butyl cyanoacrylate effectively induced significant and sustained tissue transformation and decreased estimated blood loss (EBL) over 7 days. Hemodynamic fluctuations tended to stabilize within 4 to 6 days.

7.
Cell Signal ; 119: 111195, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688381

RESUMO

OBJECTIVE: The specific mechanisms of sevoflurane-induced neurotoxicity are still undetermined. The aim of the current study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in sevoflurane-induced neuronal necroptosis. METHODS: BV2 microglial cells were divided into a control group and a 4% sevoflurane exposure group. Western blotting was used to detect expression of the M1 polarization marker inducible nitric oxide synthase (iNOS). RNA was collected for RNA sequencing analysis. After STING knockdown in microglia, western blotting was performed to examine expression of the pro-inflammatory markers CD16 and CD32. The tumor necrosis factor-α (TNF-α) level in media was detected using an enzyme-linked immunosorbent assay. BV2 microglia conditioned media was collected to incubate HT22 neuronal cells, and their cell activity was measured using a CCK8 assay. Calcium was observed by fluorescence. Western blotting was performed to evaluate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) expression. Neuronal necroptosis rate were detected using flow cytometry. RESULTS: Sevoflurane exposure promoted microglial M1 polarization. The cGAS/STING pathway was screened and identified by RNA sequencing analysis of sevoflurane-exposed microglia and the control group. Compared with the control group, STING knockdown in microglia rescued the amoeboid morphology, inhibited TNF-α release, and significantly decreased iNOS, CD16, and CD32 expression. Moreover, calcium ions and necroptosis within neurons were decreased, and RIPK1, RIPK3, and p-MLKL expression was markedly decreased in microglia media culture with STING knockdown. CONCLUSION: These results suggest that sevoflurane can regulate microglial M1 polarization by activating the cGAS/STING signaling pathway and increasing immune factor release, thus accelerating the neuronal necroptosis induced by calcium overload.


Assuntos
Proteínas de Membrana , Microglia , Necroptose , Neurônios , Nucleotidiltransferases , Sevoflurano , Transdução de Sinais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Sevoflurano/farmacologia , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Necroptose/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Linhagem Celular , Fator de Necrose Tumoral alfa/metabolismo
8.
Toxicol Appl Pharmacol ; 486: 116947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688426

RESUMO

AIMS: SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS: The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS: We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 µM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE: The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.


Assuntos
Apoptose , Cisplatino , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Ciliadas Auditivas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Cisplatino/toxicidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Linhagem Celular , Antineoplásicos/toxicidade , Masculino , Ototoxicidade/prevenção & controle
9.
Se Pu ; 42(4): 333-344, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566422

RESUMO

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Assuntos
Dimetil Sulfóxido , Espectrometria de Massas em Tandem , Animais , Humanos , Cromatografia Líquida , Células HeLa , Estradiol/farmacologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Mamíferos/metabolismo
10.
Front Oncol ; 14: 1380093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686193

RESUMO

Background: Genome instability plays a crucial role in promoting tumor development. Germline mutations in genes responsible for DNA repair are often associated with familial cancer syndromes. A noticeable exception is the CHEK1 gene. Despite its well-established role in homologous recombination, germline mutations in CHEK1 are rarely reported. Case presentation: In this report, we present a patient diagnosed with ovarian clear cell carcinoma who has a family history of cancer. Her relatives include a grandfather with esophageal cancer, a father with gastric cancer, and an uncle with a brain tumor. The patient carried a typical genomic profile of clear cell carcinoma including mutations in KRAS, PPP2R1A, and PIK3R1. Importantly, her paired peripheral blood cells harbored a germline CHEK1 mutation, CHEK1 exon 6 c.613 + 2T>C, which was also found in her father. Unfortunately, the CHEK1 status of her grandfather and uncle remains unknown due to the unavailability of their specimens. Further evaluation via RT-PCR confirmed a splicing error in the CHEK1 gene, resulting in truncation at the kinase domain region, indicative of a loss-of-function mutation. Conclusion: This case highlights a rare germline CHEK1 mutation within a family with a history of cancer. The confirmed splicing error at the mRNA level underscores the functional consequences of this mutation. Documenting such cases is vital for future evaluation of inheritance patterns, clinical penetrance of the mutation, and its association with specific cancer types.

11.
Int J Surg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652158

RESUMO

BACKGROUND: The association between allogenic blood transfusions (ABT) and all-cause mortality in surgically treated hip fracture patients with perioperative transfusion (STHFPT) remained unknown. We aim to introduce transfusion-related factors, new variables to develop and validate models to predict mortality in these patients. METHODS: A prospective multicenter cohort study was conducted with STHFPT hospitalized during Jan. 2018 and Jun. 2021. The database was divided into training cohort and validation cohort in a ratio of 70% to 30% using the randomization method. All participants received a minimum of 2-year follow-up and all participants' overall and eight time-specific survival status were recorded. Prediction models were developed using multivariate logistic regression and Cox regression for variable selection. Model performance was measured by determining discrimination, calibration, overall model performance or precision, and utility. Sensitivity analyses were performed to test robustness of the results. RESULTS: A total of 7074 consecutive patients were prospectively screened and assessed for eligibility to participate. Finally, 2490 patients met our inclusion and exclusion criteria and 1743 (70%) patients were randomized to the training cohort and 747 (30%) to the validation cohort. The median duration of follow-up was 38.4 months (IQR 28.0-62.0). Our novel models highlight that preoperative transfusion is of significance for short-term mortality while mid-term outcomes are predominantly determined by severe complications, pulmonary complications, and advanced age. Our models showed high discriminative power, good calibration and precision for mortality prediction in both training and validation cohorts, especially in short-term mortality prediction. CONCLUSIONS: We introduce transfusion-related factors, new variables to develop and validate models to predict mortality with STHFPT. The models can be further tested and updated with the ultimate goal of assisting in optimizing individual transfusion strategy.

12.
Plast Reconstr Surg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652864

RESUMO

BACKGROUND: Posterior pharyngeal flap (PPF) is effective in managing velopharyngeal insufficiency (VPI) but is of airway obstruction risk. This study compared the effectiveness and complications of two PPF revision procedures and screened potential prognostic factors to postoperative hypernasality and persistent obstruction. METHODS: Patients who received flap division (FD) or port enlargement (PE) for airway obstruction following PPF were reviewed. Ventilation status was assessed using the nasal obstruction symptom evaluation (NOSE) scale, and velopharyngeal closure was assessed using subjective speech evaluation and nasopharyngoscopy. The effectiveness of ventilation relief and complication rate (hypernasality and persistent obstruction) of the two techniques were compared. A comprehensive panel of factors, including age, velopharyngeal mobility, obstruction laterality, body mass index, jaw relationship, and adenoid hypertrophy, were evaluated for correlation with complications. RESULTS: 79 patients were enrolled, with 51 receiving FD and 28 PE. Both techniques significantly improved ventilation dysfunction and hyponasality. Mild hypernasality occurred among 10 cases in the FD group and 3 in the PE group. Age at surgery was significantly associated with persistent obstruction after PPF revision. The occurrence of persistent obstruction was significantly higher among patients below 12 years than those above. Obstruction laterality was suggested in significant correlation with hypernasality post-PPF revision. Among patients with unilateral port obstruction, the occurrence of hypernasality after FD was significantly higher than after PE. CONCLUSION: Both flap division and port enlargement are effective revision procedures to relieve airway obstruction after PPF. Patients below 12 years are more likely to experience persistent ventilation problem after PPF revision.

13.
Front Neurol ; 15: 1372861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633537

RESUMO

Background: Immune checkpoint inhibitors (ICI)-induced myasthenia gravis (MG) is an uncommon but potentially fatal neurotoxicity. We aim to help physicians familiarize themselves with the clinical characteristics of ICI-induced MG, facilitating early diagnosis and prompt intervention. Methods: We searched the Chinese People's Liberation Army General Hospital medical record system from January 2017 to August 2023 for patients diagnosed with ICI-induced MG. We systematically reviewed the literature until August 2023 to identify all similar patients. We collected clinical information on these patients. Results: 110 patients were identified, 9 from our institution and 101 from case reports. In our institution, Median age was 66 years (range: 49-79 years). 6 were males. The most common was lung cancer (n = 4). All patients had no previous history of MG and received PD-1 or PD-L1 inhibitors. The median time from ICI initiation to first MG symptoms was 4 weeks (range: 2-15 weeks). ICIs were discontinued in all patients. Most patients initially received high-dose corticosteroids, and their symptoms improved. Some patients are discharged with corticosteroids maintenance therapy. In addition, 55 patients (50%) with concomitant myositis and/or myocarditis and MG-induced mortality were more common in the myositis and/or myocarditis group (10.9% vs. 34.5%, p = 0.016). Overlap of myositis with MG (OR = 3.148, p = 0.009) and anti-AChR antibody positivity (OR = 3.364, p = 0.005) were both significantly associated with poor outcomes. Conclusion: Our study reveals the prognosis of ICI-induced MG and suggests that myositis and/or myocarditis are severe comorbidities of ICI-induced MG, emphasizing the importance of early diagnosis and clinical intervention.

14.
Cancer Cell Int ; 24(1): 124, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570766

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent renal cancers, and the molecular mechanisms underlying its progression are still not fully understood. The expression of CCDC25, a notably underexpressed gene in many tumors, has been understudied in ccRCC. This research aims to explore the role of CCDC25 in ccRCC's clinical outcomes and uncover the molecular pathways influenced by it. METHODS: A multi-tiered approach was adopted involving bioinformatic analysis, tissue sample evaluation, in vitro and in vivo experiments. CCDC25 expression levels in tumor vs. normal tissues were quantified using Western blot and immunofluorescence studies. Cell proliferation and migration were analyzed using CCK8, EDU, Transwell assays, and wound healing assays. RNA sequencing was performed to elucidate the molecular pathways affected, followed by detailed protein-protein interaction studies and mouse xenograft models. RESULTS: CCDC25 was predominantly underexpressed in ccRCC tumors and associated with advanced clinical stages and poor prognosis. Overexpression of CCDC25 in renal cancer cell lines resulted in reduced proliferation and migration. RNA sequencing revealed significant alterations in the Hippo pathway. Overexpression of CCDC25 inhibited the expression of downstream Hippo pathway proteins ITGA3 and CCND1 and promoted YAP phosphorylation. Mechanistic studies showed that CCDC25 interacts with YAP and influences YAP phosphorylation through LATS1. In vivo, CCDC25 overexpression inhibited tumor growth and promoted apoptosis. CONCLUSION: CCDC25 acts as a potential tumor suppressor in ccRCC by inhibiting cell proliferation and migration, potentially through regulating the Hippo signaling pathway. These findings highlight the potential of CCDC25 as a therapeutic target in ccRCC treatment.

15.
Genes (Basel) ; 15(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38674393

RESUMO

To date, genomic and transcriptomic data on Coffea arabica L. in public databases are very limited, and there has been no comprehensive integrated investigation conducted on alternative splicing (AS). Previously, we have constructed and sequenced eighteen RNA-seq libraries of C. arabica at different ripening stages of fruit development. From this dataset, a total of 3824, 2445, 2564, 2990, and 3162 DSGs were identified in a comparison of different fruit ripening stages. The largest proportion of DSGs, approximately 65%, were of the skipped exon (SE) type. Biologically, 9 and 29 differentially expressed DSGs in the spliceosome pathway and carbon metabolism pathway, respectively, were identified. These DSGs exhibited significant variations, primarily in S1 vs. S2 and S5 vs. S6, and they involve many aspects of organ development, hormone transduction, and the synthesis of flavor components. Through the examination of research findings regarding the biological functions and biochemical pathways associated with DSGs and DEGs, it was observed that six DSGs significantly enriched in ABC transporters, namely, LOC113712394, LOC113726618, LOC113739972, LOC113725240, LOC113730214, and LOC113707447, were continually down-regulated at the fruit ripening stage. In contrast, a total of four genes, which were LOC113732777, LOC113727880, LOC113690566, and LOC113711936, including those enriched in the cysteine and methionine metabolism, were continually up-regulated. Collectively, our findings may contribute to the exploration of alternative splicing mechanisms for focused investigations of potential genes associated with the ripening of fruits in C. arabica.


Assuntos
Processamento Alternativo , Coffea , Frutas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Transcriptoma/genética , Coffea/genética , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Sci Data ; 11(1): 410, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649693

RESUMO

Uterine myomas are the most common pelvic tumors in women, which can lead to abnormal uterine bleeding, abdominal pain, pelvic compression symptoms, infertility, or adverse pregnancy. In this article, we provide a dataset named uterine myoma MRI dataset (UMD), which can be used for clinical research on uterine myoma imaging. The UMD is the largest publicly available uterine MRI dataset to date including 300 cases of uterine myoma T2-weighted imaging (T2WI) sagittal patient images and their corresponding annotation files. The UMD covers 9 types of uterine myomas classified by the International Federation of Obstetrics and Gynecology (FIGO), which were annotated and reviewed by 11 experienced doctors to ensure the authority of the annotated data. The UMD is helpful for uterine myomas classification and uterine 3D reconstruction tasks, which has important implications for clinical research on uterine myomas.


Assuntos
Leiomioma , Imageamento por Ressonância Magnética , Neoplasias Uterinas , Feminino , Humanos , Neoplasias Uterinas/diagnóstico por imagem , Leiomioma/diagnóstico por imagem , Útero/diagnóstico por imagem
17.
Hepatology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466833

RESUMO

BACKGROUND AND AIMS: RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS: RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS: Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.

18.
Heliyon ; 10(6): e27840, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545139

RESUMO

Background: In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The ß-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods: Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of ß-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results: Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and ß-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of ß-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/ß-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with ß-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion: Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the ß-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.

19.
Chin J Nat Med ; 22(3): 265-272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553193

RESUMO

Four new sesquiterpene lactones (SLs) (1-4), along with a biosynthetically related SL (5), have been isolated from the leaves of Magnolia grandiflora. Magrandate A (1) is notable as the first C18 homogemarane type SL, featuring a unique 1,7-dioxaspiro[4.4]nonan-6-one core. Compounds 2 and 3, representing the first instances of chlorine-substituted gemarane-type SL analogs in natural products, were also identified. The structures of these isolates were elucidated through a combination of spectroscopic data analysis, electronic circular dichroism calculations, and X-ray single-crystal diffraction analysis. All isolates demonstrated anti-inflammatory activity in lipopolysaccharide-stimulated RAW264.7 cells. Notably, 3-5 showed a significant inhibitory effect on nitric oxide production, with IC50 values ranging from 0.79 to 4.73 µmol·L-1. Additionally, 4 and 5 exhibited moderate cytotoxic activities against three cancer cell lines, with IC50 values between 3.09 and 11.23 µmol·L-1.


Assuntos
Magnolia , Sesquiterpenos , Estrutura Molecular , Magnolia/química , Anti-Inflamatórios/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Lactonas/farmacologia , Lactonas/química
20.
Int J Pharm ; 655: 124025, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513816

RESUMO

Combination therapy exhibits higher efficacy than any single therapy, inspiring various nanocarrier-assisted multi-drug co-delivery systems for the combined treatment of cancer. However, most nanocarriers are inert and non-therapeutic and have potential side effects. Herein, an amphiphilic polymer composed of a hydrophobic photosensitizer and hydrophilic poly(ethylene glycol) was employed as the nanocarriers and photosensitizers to encapsulate the chemotherapeutic drug mitoxantrone for chemo-photodynamic combination therapy. The resulting nanodrug consisted solely of pharmacologically active ingredients, thus avoiding potential toxicity induced by inert excipients. This multifunctional nanoplatform demonstrated significantly superior treatment performance compared to monotherapy for colorectal cancer, both in vitro and in vivo, achieving near-infrared fluorescence imaging-mediated chemo-photodynamic combined eradication of malignancy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Mitoxantrona , Nanomedicina Teranóstica/métodos , Nanopartículas/química , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Imagem Óptica , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA