Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1229955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808307

RESUMO

Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.

2.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240257

RESUMO

Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.


Assuntos
Saccharum , Transcriptoma , Saccharum/metabolismo , Proteômica , Perfilação da Expressão Gênica , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Microbiol ; 13: 924283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814670

RESUMO

Some sugarcane germplasms can absorb higher amounts of nitrogen via atmospheric nitrogen fixation through the bacterial diazotrophs. Most endophytic diazotrophs usually penetrate through the root, colonize inside the plant, and fix the nitrogen. To assess the plant's bacterial association during root colonization, strain GXS16 was tagged with a plasmid-bear green fluorescent protein (GFP) gene. The results demonstrated that the strain can colonize roots all the way to the maturation zone. The strain GXS16 showed maximum nitrogenase enzyme activity at pH 8 and 30°C, and nitrogenase activity is less affected by different carbon sources. Further, strain GXS16 colonization response was investigated through plant hormones analysis and RNAseq. The results showed that the bacterial colonization gradually increased with time, and the H2O2 and malondialdehyde (MDA) content significantly increased at 1 day after inoculation. There were no substantial changes noticed in proline content, and the ethylene content was detected initially, but it decreased with time. The abscisic acid (ABA) content showed significant increases of 91.9, 43.9, and 18.7%, but conversely, the gibberellin (GA3) content decreased by 12.9, 28.5, and 45.2% at 1, 3, and 5 days after inoculation, respectively. The GXS16 inoculation significantly increased the activities of catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), ascorbate peroxidase (APX), and glutathione reductase (GR) at different timepoint. In contrast, the peroxisome (POD) activity had no changes detected during the treatment. In the case of RNAseq analysis, 2437, 6678, and 4568 differentially expressed genes (DEGs) were identified from 1, 3, and 5 days inoculated root samples, and 601 DEGs were shared in all samples. The number or the expression diversity of DEGs related to ethylene was much higher than that of ABA or GA, which indicated the critical role of ethylene in regulating the sugarcane roots response to GXS16 inoculation.

4.
Plant Physiol Biochem ; 166: 582-592, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175813

RESUMO

Plant cell and water relationship regulates morphological, physiological and biochemical characteristics to optimize carboxylation for enhanced biomass yield in sugarcane. Insufficient water irrigation is one of the serious problems to impair potential yield of agriculturally important sugarcane cash crop by loss in plant performance. Our study aims to reveal consequences of foliar spray of silicon (Si) using calcium metasilicate powder (Wollastonite, CaO.SiO2) to alleviate the adverse effects of limited water irrigation in sugarcane. Silicon (0, 50, 100 and 500 ppm) was applied as foliar spray on normally grown 45 days old sugarcane plants. Further, these plants were raised at half field capacity (50%) using water irrigation precisely up to 90 days under open environmental variables. Consequently, restricted irrigation impaired plant growth-development, leaf relative water content (%), photosynthetic pigments, SPAD unit, photosynthetic performance, chlorophyll fluorescence variable yield (Fv/Fm) and biomass yield. Notably, it has enhanced values of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), antioxidative defense enzyme molecules viz., catalase (CAT), ascorbate peroxidase (APx) and superoxide dismutase (SOD). The foliar spray of Si defended sugarcane plants from limited water irrigation stress as Si quenched harmful effect of water-deficit and also enhanced the operation of antioxidant defense machinery for improved sugarcane plant performance suitably favored stomatal dynamics for photosynthesis and plant productivity.


Assuntos
Saccharum , Antioxidantes , Peróxido de Hidrogênio , Fotossíntese , Folhas de Planta , Silício/farmacologia , Dióxido de Silício , Água
5.
Biol Res ; 54(1): 15, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933166

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Saccharum , Silício , Desidratação , Fotossíntese , Folhas de Planta , Água
6.
ACS Omega ; 6(3): 2396-2409, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521478

RESUMO

Sufficient water and fertilizer inputs in agriculture play a major role in crop growth, production, and quality. In this study, the response of sugarcane to limited water irrigation and foliar application of potassium salt of active phosphorus (PSAP) for photosynthetic responses were examined, and PSAP's role in limited water irrigation management was assessed. Sugarcane plants were subjected to limited irrigation (95-90 and 45-40% FC) after three months of germination, followed by a foliar spray (0, 2, 4, 6, and 10 M) of PSAP. The obtained results indicated that limited water irrigation negatively affected sugarcane growth and reduced leaf gas exchange activities. However, the application of PSAP increased the photosynthetic activities by protecting the photosynthetic machinery during unfavorable conditions. Mathematical modeling, a Skewed model, was developed and compared with the existing Gaussian model to describe the photosynthetic responses of sugarcane leaves under the limited irrigation with and without PSAP application. The models fitted well with the observed values, and the predicted photosynthetic parameters were in close relationship with the obtained results. The Skewed model was found to be better than the Gaussian model in describing the photosynthetic parameters of plant leaves positioned over a stem of limited water irrigation and applied PSAP application and is recommended for further application.

7.
Biol. Res ; 54: 15-15, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505808

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Silício , Saccharum , Fotossíntese , Água , Folhas de Planta , Desidratação
8.
Biol. Res ; 54: 19-19, 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1505788

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Plantas , Solo , Agricultura
9.
Plants (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823963

RESUMO

Silicon (Si) is not categorized as a biologically essential element for plants, yet a great number of scientific reports have shown its significant effects in various crop plants and environmental variables. Plant Si plays biologically active role in plant life cycle, and the significant impact depends on its bioaccumulation in plant tissues or parts. In particular, it has been investigated for its involvement in limited irrigation management. Therefore, this experiment was conducted to examine the effect of Si application in eco-physiological, enzymatic and non-enzymatic activities of sugarcane plants against water stress. Four irrigation levels, i.e., normal (100-95% of soil moisture), 80-75, 55-50, and 35-30% of soil moisture were treated for the sugarcane cultivar GT 42 plants supplied with 0, 100, 200, 300, 400 and 500 mg Si L-1 and exposed for 60 days after Si application. Under stress, reduction in plant length (~26-67%), leaf area-expansion (~7-51%), relative water content (~18-57%), leaf greenness (~12-35%), photosynthetic pigments (~12-67%), physiological responses such as photosynthesis (22-63%), stomatal conductance (~25-61%), and transpiration rate (~32-63%), and biomass production were observed in the plants without Si application. The drought condition also inhibited the activities of antioxidant enzymes like catalase (~10-52%), peroxidase (ca. 4-35), superoxide dismutase (10-44%) and enhanced proline (~73-410%), and malondialdehyde content (ca. 15-158%), respectively. However, addition of Si ameliorated drought induced damage in sugarcane plants. The findings suggest that the active involvement of Si in sugarcane responsive to water stress ranges from plant performance and physiological processes, to antioxidant defense systems.

10.
BMC Microbiol ; 19(1): 2, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616519

RESUMO

BACKGROUND: Sugarcane is an important sugar and economic crop in the world. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. xyli, is widespread in countries and regions where sugarcane is grown and also limited to sugarcane productivity. Although the whole genome sequencing of Leifsonia xyli subsp. xyli was completed, progress in understanding the molecular mechanism of the disease has been slow because it is difficult to grow in culture. RESULTS: The Leifsonia xyli subsp. xyli membrane protein gene Lxx18460 (anti-sigma K) was cloned from the Lxx-infected sugarcane cultivar GT11 at the mature stage using RT-PCR technique, and the gene structure and expression in infected sugarcane were analyzed. The Lxx18460 gene was transformed into Nicotiana tabacum by Agrobacterium tumefaciens-mediation. The transgenic tobacco plants overexpressing Lxx18460 had lower levels in plant height, leaf area, net photosynthetic rate and endogenous hormones of IAA, ABA and GA3, as well as lower activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild type (WT) tobacco. With the plant growth, the expression of Lxx18460 gene and protein was increased. To better understand the regulation of Lxx18460 expression, transcriptome analysis of leaves from transgenic and wild type tobacco was performed. A total of 60,222 all-unigenes were obtained through BGISEQ-500 sequencing. Compared the transgenic plants with the WT plants, 11,696 upregulated and 5949 downregulated genes were identified. These differentially expressed genes involved in many metabolic pathways including signal transduction, biosynthesis of other secondary metabolism, carbohydrate metabolism and so on. Though the data presented here are from a heterologous system, Lxx 18460 has an adverse impact on the growth of tobacco; it reduces the photosynthesis of tobacco, destroys the activity of defense enzymes, and affects the levels of endogenous hormones, which indicate that Lxx18460 may act important roles in the course of infection in sugarcane. CONCLUSIONS: This is the first study on analyzing the function of the membrane protein gene Lxx18460 of anti-sigma K (σK) factor in Leifsonia xyli subsp. xyli. Our findings will improve the understanding of the interaction between the RSD pathogen Leifsonia xyli subsp. xyli and sugarcane. The output of this study will also be helpful to explore the pathogenesis of RSD.


Assuntos
Actinomycetales/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Saccharum/microbiologia , Proteínas de Membrana/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Transcriptoma
11.
Plant Cell Rep ; 35(9): 1891-905, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27316630

RESUMO

KEY MESSAGE: Overexpression of SoSnRK2.1 improved drought tolerance and growth of tobacco plants. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. In this research, SoSnRK2.1 gene was cloned from sugarcane variety GT21 and characterized under various stresses. The cloned SoSnRK2.1 gene has a complete open reading frame of 1002 bp, encoding a peptide of 333 amino acids. The amino acid sequence of SoSnRK2.1 has high homology with those of Zea mays and Oryza sativa, which belongs to SnRK2 s families. The expression of SoSnRK2.1 under stresses of drought, PEG, and ABA indicated that this gene is involved in stress responses in sugarcane. To investigate the gene function, fusional SoSnRK2.1-GFP-pBI121 under control of CaMV 35S was transformed into tobacco plants. Growth and morphology of transgenic plants demonstrated that overexpression of SoSnRK2.1 enhanced drought tolerance in tobacco. Transgenic tobacco plants had lower levels of ion leakage (IL), and contents of maleic dialdehyde (MDA) and H2O2, with higher activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and chlorophyll and relative water content (RWC) than those in wide type (WT) tobacco. SoSnRK2.1 was stably transmitted to the next generation via sexual reproduction. Though the data presented here are from a heterologous system, it is highly likely that SoSnRK2.1 is involved in the abiotic stress response in sugarcane and may be playing an important role in regulation of its growth.


Assuntos
Adaptação Fisiológica/genética , Secas , Genes de Plantas , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Saccharum/genética , Sequência de Aminoácidos , Southern Blotting , Catalase/metabolismo , Clorofila/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Íons , Malondialdeído/metabolismo , Peroxidase/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Água/metabolismo
12.
Plant Physiol Biochem ; 73: 427-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932150

RESUMO

Whether anthocyanins elevate resistance to chilling-induced oxidative stress in Saccharum officinarum L. cv Badila seedlings is investigated. Plants with four fully expanded leaves were exposed to chilling stress (8 °C/4 °C, 11 h photoperiod) for 3 days and then transferred to rewarming condition (25 °C/20 °C, 11 h photoperiod) for another 2 days. At the end of the chilling period, H2O2 and superoxide radical (O2-) levels increased sharply and were near the same in the central (CL) and the final fully expanded leaves (FL). Moreover, the degree of chilling injury indicated by malonaldehyde concentration and percent of ion leakage also was near the same. Most of the tested parameters returned near to the control level after 2 days of rewarming. With further analyzing, we found that superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) activities increased much higher and catalase (EC 1.11.1.6) activity and ascorbate/dehydroascorbate ratio decreased much more in FL than CL in response to chilling. However, anthocyanins concentration coupling with glutathione/oxidized glutathione increased much higher in CL than FL under chilling stress. These finds suggest that anthocyanins at least partially compensate the relative deficiency of antioxidants in CL compared with FL. α,α-Diphenyl-ß-picrylhydrazyl assays further confirmed this idea. The relationships between anthocyanins and antioxidants were analyzed and the possible mechanisms of the affection of anthocyanins on antioxidant metabolism were discussed.


Assuntos
Adaptação Fisiológica , Antocianinas/metabolismo , Antioxidantes/metabolismo , Temperatura Baixa , Estresse Oxidativo , Folhas de Planta/metabolismo , Saccharum/fisiologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Íons/metabolismo , Malondialdeído/metabolismo , Saccharum/enzimologia , Saccharum/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA