Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Cancer Res ; 14(5): 2037-2054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859843

RESUMO

Glioblastoma is the most common cancer in the brain, resistant to conventional therapy and prone to recurrence. Therefore, it is crucial to explore novel therapeutics strategies for the treatment and prognosis of GBM. In this study, through analyzing online datasets, we elucidated the expression and prognostic value of POLR2J and its co-expressed genes in GBM patients. Functional experiments, including assays for cell apoptosis and cell migration, were used to explore the effects of POLR2J and vorinostat on the proliferation and migration of GBM cells. The highest overexpression of POLR2J, among all cancer types, was observed in GBM. Furthermore, high expression of POLR2J or its co-expressed genes predicted a poor outcome in GBM patients. DNA replication pathways were significantly enriched in the GBM clinical samples with high POLR2J expression, and POLR2J suppression inhibited proliferation and triggered cell cycle G1/S phase arrest in GBM cells. Moreover, POLR2J silencing activated the unfolded protein response (UPR) and significantly enhanced the anti-GBM activity of vorinostat by suppressing cell proliferation and inducing apoptosis. Additionally, POLR2J could interact with STAT3 to promote the metastatic potential of GBM cells. Our study identifies POLR2J as a novel oncogene in GBM progression and provides a promising strategy for the chemotherapeutic treatment of GBM.

2.
Phytomedicine ; 126: 155204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342015

RESUMO

BACKGROUND: According to the literatures, triacanthine is isolated from the leaves of Gleditsia triacanthos L. and acts as an anti-hypertensive agent, also cardiotonic, antispasmodic and a respiratory analeptic. The 5-fluorouracil (5-FU) is widely used to treat the patients of colorectal cancer (CRC), but the resistance to 5-FU treatment restricts the therapeutic efficacy of CRC patients. PURPOSE: This study aims to explore a novel therapeutics regimen overcoming CRC resistance to 5-FU. METHODS: The cell proliferation of CRC cells was determined by SRB and colony formation assay. Transwell and wound-healing assay were applied to explore the potential metastatic abilities of CRC cells. qRT-PCR and Western blot were performed to evaluate the level of indicated mRNAs and proteins respectively. Xenograft assay was used to explore the anti-CRC effect of triacanthine. RESULTS: Triacanthine statistically restrained CRC proliferation both in vitro and in vivo. Triacanthine induced cell cycle G1/G0 phase arrest in CRC cells. Meanwhile, triacanthine also inhibited the migrative and invasive abilities of CRC cells. A Venn diagram was generated showing that O-6-Methylguanine-DNA Methyltransferase (MGMT) might be a molecular target of triacanthine in treating CRC. Furthermore, triacanthine plus 5-FU significantly suppressed the cell proliferation of CRC cells compared with single agent treatment alone, and highly synergistic anti-cancer effects were scored when 5-FU was combined with triacanthine in CRC cells. In addition, triacanthine sensitized the anti-cancer activity of 5-FU via regulating Ribonucleotide Reductase Regulatory Subunit M2 (RRM2). MGMT or RRM2 might be novel biomarkers for evaluating the therapeutical efficiency of 5-FU in CRC patients. CONCLUSION: We firstly demonstrated triacanthine suppressed cell proliferation and metastasis abilities and found the novel molecular targets of triacanthine in CRC cells. This is the first study to evaluate the anti-cancer efficiency of triacanthine plus 5-FU. Our study has revealed triacanthine as a pertinent sensitizer to 5-FU, and provided novel strategies for predicting outcomes and reversing resistance of 5-FU therapy.


Assuntos
Alcaloides , Neoplasias Colorretais , Purinas , Humanos , Fluoruracila/farmacologia , Oxirredutases , Neoplasias Colorretais/patologia , Alcaloides/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Apoptose
3.
Redox Biol ; 70: 103039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241838

RESUMO

The function of SLC7A11 in the process of ferroptosis is well-established, as it regulates the synthesis of glutathione (GSH), thereby influencing tumor development along with drug resistance in non-small cell lung cancer (NSCLC). However, the determinants governing SLC7A11's membrane trafficking and localization remain unknown. Our study identified SPTBN2 as a ferroptosis suppressor, enhancing NSCLC cells resistance to ferroptosis inducers. Mechanistically, SPTBN2, through its CH domain, interacted with SLC7A11 and connected it with the motor protein Arp1, thus facilitating the membrane localization of SLC7A11 - a prerequisite for its role as System Xc-, which mediates cystine uptake and GSH synthesis. Consequently, SPTBN2 suppressed ferroptosis through preserving the functional activity of System Xc- on the membrane. Moreover, Inhibiting SPTBN2 increased the sensitivity of NSCLC cells to cisplatin through ferroptosis induction, both in vitro and in vivo. Using Abrine as a potential SPTBN2 inhibitor, its efficacy in promoting ferroptosis and sensitizing NSCLC cells to cisplatin was validated. Collectively, SPTBN2 is a potential therapeutic target for addressing ferroptosis dysfunction and cisplatin resistance in NSCLC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Espectrina , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Glutationa , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Espectrina/metabolismo
4.
Drug Resist Updat ; 73: 101032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198846

RESUMO

Acquired radioresistance is the primary contributor to treatment failure of radiotherapy, with ferroptosis is identified as a significant mechanism underlying cell death during radiotherapy. Although resistance to ferroptosis has been observed in both clinical samples of radioresistant cells and cell models, its mechanism remains unidentified. Herein, our investigation revealed that radioresistant cells exhibited greater tolerance to Glutathione Peroxidase 4 (GPX4) inhibitors and, conversely, increased sensitivity to ferroptosis suppressor protein 1 (FSP1) inhibitors compared to their sensitive counterparts. This observation suggested that FSP1 might play a dominant role in the development of radioresistance. Notably, the knockout of FSP1 demonstrated considerably superior efficacy in resensitizing cells to radiotherapy compared to the knockout of GPX4. To elucidate the driving force behind this functional shift, we conducted a metabolomic assay, which revealed an upregulation of Coenzyme Q (CoQ) synthesis and a downregulation of glutathione synthesis in the acquired radioresistance cells. Mechanistically, CoQ synthesis was found to be supported by aarF domain containing kinase 3-mediated phosphorylation of CoQ synthases, while the downregulation of Solute carrier family 7 member 11 led to decreased glutathione synthesis. Remarkably, our retrospective analysis of clinical response data further validated that the additional administration of statin during radiotherapy, which could impede CoQ production, effectively resensitized radioresistant cells to radiation. In summary, our findings demonstrate a dependency shift from GPX4 to FSP1 driven by altered metabolite synthesis during the acquisition of radioresistance. Moreover, we provide a promising therapeutic strategy for reversing radioresistance by inhibiting the FSP1-CoQ pathway.


Assuntos
Ferroptose , Humanos , Regulação para Cima , Ferroptose/genética , Estudos Retrospectivos , Regulação para Baixo , Glutationa
5.
Cancer Cell Int ; 23(1): 208, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742009

RESUMO

Lung cancer is a leading cause of cancer-related deaths, and the most common type is lung adenocarcinoma (LUAD). LUAD is frequently diagnosed in people who never smoked, patients are always diagnosed at advanced inoperable stages, and the prognosis is ultimately poor. Thus, there is an urgent need for the development of novel targeted therapeutics to suppress LUAD progression. In this study, we demonstrated that the expression of DNA replication and sister chromatid cohesion 1 (DSCC1) was higher in LUAD samples than normal tissues, and the overexpression of DSCC1 or its coexpressed genes were highly correlated with poor outcomes of LUAD patients, highlighting DSCC1 might be involved in LUAD progression. Furthermore, the expression of DSCC1 was positively correlated with multiple genetic mutations which drive cancer development, including TP53, TTN, CSMD, and etc. More importantly, DSCC1 could promote the cell proliferation, stemness, EMT, and metastatic potential of LUAD cells. In addition, DSCC1 interacted with HSP90AB1 and promoted the progression of LUAD via regulating ER stress. Meanwhile, DSCC1 expression negatively correlated with immune cell infiltration in lung cancer, and DSCC1 positively regulated the expression of PD-L1 in LUAD cells. Collectively, this study revealed that DSCC1 is a novel therapeutic target to treat LUAD and a biomarker for predicting the efficiency of PD-1/PD-L1 blockade treatment.

6.
Front Oncol ; 13: 1192386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322286

RESUMO

Hepatocellular carcinoma (HCC) is an extremely heterogeneous malignant tumor with a high morbidity and mortality. Circular RNAs (circRNAs) are noncoding RNAs with high stability, organ/tissue/cell-specific expression and are conserved across species. Accumulating evidence suggested that circRNAs play crucial roles as microRNA sponges, protein sponges, scaffolds, recruiters and could even polypeptide encoders. Many studies have since revealed that circRNAs were aberrantly expressed in HCC and acted as crucial modulators of HCC carcinogenesis and progression. Furthermore, circRNAs have also been identified as potential diagnostic and prognostic biomarkers for HCC. In this review, we thoroughly outline and evaluate the function of circRNAs in HCC development, with an emphasis on the specific molecular pathways by which they participated in the formation and progression of HCC, and we address their potential for serving as clinical biomarkers in HCC.

7.
J Biomed Sci ; 29(1): 34, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655269

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer cases, while metastasis is considered the leading cause of HCC-related death. However, the currently available treatment strategies for efficient suppression of metastasis are limited. Therefore, novel therapeutic targets to inhibit metastasis and effectively treat HCC are urgently required. METHODS: Wound healing and Transwell assays were used to determine the migration and invasion abilities of HCC cells in vitro. Quantitative real-time PCR (qRT-PCR), protein array, immunofluorescence, and immunoprecipitation experiments were used to study the mechanism of DYRK1A-mediated metastasis. A tail vein metastasis model and H&E staining were utilized to assess metastatic potential in vivo. RESULTS: The results of the current study demonstrated that dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) was upregulated in HCC tissues compared with normal liver tissues. Additionally, the level of DYRK1A was increased in primary HCC tissues of patients with metastasis compared with those of patients without metastasis, and DYRK1A overexpression correlated with worse outcomes in liver cancer patients. Gain- and loss-of-function studies suggested that DYRK1A enhanced the invasion and migration abilities of HCC cells by promoting epithelial-mesenchymal transition (EMT). Regarding the promoting effect of DYRK1A on cell invasion, the results showed that DYRK1A was coexpressed with TGF-ß/SMAD and STAT3 signalling components in clinical tumour samples obtained from patients with HCC. DYRK1A also activated TGF-ß/SMAD signalling by interacting with tuberous sclerosis 1 (TSC1) and enhanced metastasis of HCC cells by activating STAT3. Furthermore, DYRK1A promoted EMT by cooperatively activating STAT3/SMAD signalling. CONCLUSION: Overall, the present study not only uncovered the promoting effect of DYRK1A on HCC metastasis and revealed the mechanism but also provided a new approach to predict and treat metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Cancer Cell Int ; 22(1): 189, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568951

RESUMO

BACKGROUND: Inositol Polyphosphate-5-Phosphatase B (INPP5B), a inositol 5-phosphatase, plays an important role in many biological processes through phosphorylating PI(4,5)P2 and/or PI(3,4,5)P3 at the 5-position. Nevertheless, little is known about its function and cellular pathways in tumors. This study aims to investigate the potential role of INPP5B as a diagnostic and prognostic biomarker for lung adenocarcinoma (LUAD), as well as its biological functions and molecular mechanisms in LUAD. METHODS: TCGA, GEO, CTPAC, and HPA datasets were used for differential expression analysis and pathological stratification comparison. The prognostic and diagnostic role of INPP5B was determined by Kaplan-Meier curves, univariate and multivariate Cox regression analysis, and receiver operating characteristics (ROC) curve analyses. The potential mechanism of INPP5B was explored through GO, KEGG, and GSEA enrichment analysis, as well as GeneMANIA and STRING protein-protein interaction (PPI) network. PicTar, PITA, and miRmap databases were used for exploring miRNA targeting INPP5B. In molecular biology experiments, immunohistochemical analyses and Western blot analyses were used to determine protein expression. Co-immunoprecipitation assay was used to detect protein-protein interactions. CCK8 assays and colony formation assays were used for the measurement of cell proliferation. Cell cycle was assessed by PI staining with flow cytometry. Cell migration was performed by Transwell assays and wound healing assays. RESULT: INPP5B was decreased in LUAD tissues compared with normal adjacent tissues. And the low expression of INPP5B was associated with late-stage pathological features. In addition, INPP5B was found to be a significant independent prognostic and diagnostic factor for LUAD patients. Hsa-miR-582-5p was predicted as a negative regulator of INPP5B mRNA expression. INPP5B was significantly correlated with the expression of PTEN and the activity of PI3K/AKT signaling pathways, as determined by enrichment analysis and PPI network. In vitro experiments partially confirmed the aforementioned findings. INPP5B could interact directly with PTEN. INPP5B overexpression inhibited LUAD cell proliferation and migration while downregulating the AKT pathway. CONCLUSION: Our results demonstrated that INPP5B could inhibit the proliferation and metastasis of LUAD cells. It could serve as a novel diagnostic and prognostic biomarker for LUAD patients. Trial registration LUAD tissues and corresponding para-cancerous tissues were collected from 10 different LUAD patients at Hangzhou First People's Hospital. The Ethics Committee of Hangzhou First People's Hospital has approved this study. (registration number: IIT-20210907-0031-01; registration date: 2021.09.13).

10.
Int J Oncol ; 60(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35244188

RESUMO

Hypoxia promotes drug resistance and induces the expression of hypoxia inducible factor (HIF)­1α in liver cancer cells. However, to date, no selective HIF­1α inhibitor has been clinically approved. The aim of this study is to investigate a drug­targetable molecule that can regulate HIF­1α under hypoxia. The present study demonstrated that hyperactivation of dual­specificity tyrosine­phosphorylation­regulated kinase 1A (DYRK1A)/HIF­1α signaling was associated with an increased risk of liver cancer. In addition, DYRK1A knockdown using small interfering RNA transfection or treatment with harmine, a natural alkaloid, significantly reduced the protein expression levels of HIF­1α in liver cancer cells under hypoxic conditions in vitro. Conversely, DYRK1A overexpression­vector transfection in liver cancer cell lines notably induced HIF­1α expression under the same conditions. Furthermore, DYRK1A was shown to interact and activate STAT3 under hypoxia to regulate HIF­1α expression. These findings indicated that DYRK1A may be a potential upstream activator of HIF­1α and positively regulate HIF­1α via the STAT3 signaling pathway in liver cancer cells. Additionally, treatment with harmine attenuated the proliferative ability of liver cancer cells under hypoxic conditions using sulforhodamine B and colony formation assay. Furthermore, DYRK1A knockdown could significantly enhance the anti­liver cancer effects of regorafenib and sorafenib under hypoxia. Co­treatment with harmine and either regorafenib or sorafenib also promoted cell death via the STAT3/HIF­1α/AKT signaling pathway under hypoxia using PI staining and western blotting. Overall, the results from the present study suggested that DYRK1A/HIF­1α signaling may be considered a novel pathway involved in chemoresistance, thus providing a potentially effective therapeutic regimen for treating liver cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Sorafenibe/farmacocinética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/fisiopatologia , Compostos de Fenilureia/metabolismo , Fatores de Proteção , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Piridinas/metabolismo , Sorafenibe/metabolismo , Quinases Dyrk
11.
Int Immunopharmacol ; 101(Pt A): 108297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34717202

RESUMO

The P2X7 receptor (P2X7R) is a ligand-gated receptor belonging to the P2 receptor family. It is distributed in various tissues of the human body and is involved in regulating the physiological functions of tissues and cells to affect the occurrence and development of diseases. Unlike all other P2 receptors, the P2X7 receptor is mainly expressed in immune cells and can be activated not only by extracellular nucleotides but also by non-nucleotide substances which act as positive allosteric modulators. In this review, we comprehensively describe the role of the P2X7 receptor in infection and metabolism based on its role as an important regulator of inflammation and immunity, and briefly introduce the structure and general function of the P2X7 receptor. These provide a clear knowledge framework for the study of the P2X7 receptor in human health. Targeting the P2X7 receptor may be an effective method for the treatment of inflammatory and immune diseases. And its role in microbial infection and metabolism may be the main direction for in-depth research on the P2X7 receptor in the future.


Assuntos
Imunidade , Infecções/imunologia , Inflamação/imunologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Humanos , Imunidade/fisiologia , Infecções/metabolismo , Inflamação/metabolismo , Receptores Purinérgicos P2X7/fisiologia
12.
Anticancer Drugs ; 32(7): 727-733, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735117

RESUMO

Vinpocetine is widely used to treat cerebrovascular diseases. However, the effect of vinpocetine to treat hepatocellular carcinoma (HCC) has not been investigated. In this study, we revealed that vinpocetine was associated with antiproliferative activity in HCC cells, but induced cytoprotective autophagy, which restricted its antitumor activity. Autophagy inhibitors improved the antiproliferative activity of vinpocetine in HCC cells. Sorafenib is effective to treat advanced HCC, but the effect of autophagy induced by sorafenib is indistinct. We demonstrated vinpocetine plus sorafenib suppressed the cytoprotective autophagy activated by vinpocetine in HCC cells and significantly induced apoptosis and suppressed cell proliferation in HCC cells. In addition, vinpocetine plus sorafenib activates glycogen synthase kinase 3ß (GSK-3ß) and subsequently inhibits cytoprotective autophagy induced by vinpocetine in HCC cells. Meanwhile, overexpression of GSK-3ß was efficient to increase the apoptosis induced by vinpocetine plus sorafenib in HCC cells. Our study revealed that vinpocetine plus sorafenib could suppress the cytoprotective autophagy induced by vinpocetine and subsequently show synergistically anti-HCC activity via activating GSK-3ß and the combination of vinpocetine and sorafenib might reverse sorafenib resistance via the PI3K/protein kinase B/GSK-3ß signaling axis. Thus, vinpocetine may be a potential candidate for sorafenib sensitization and HCC treatment, and our results may help to elucidate more effective therapeutic options for HCC patients with sorafenib resistance.


Assuntos
Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Sorafenibe/farmacologia , Alcaloides de Vinca/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/administração & dosagem , Alcaloides de Vinca/administração & dosagem
13.
Oncogene ; 39(39): 6203-6217, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32826950

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer and frequently diagnosed at an advanced stage. It is prone to develop unpredictable metastases even with proper treatment. Antiangiogenic therapy is the most effective medical treatment for metastatic ccRCC. Thus, exploration of novel approaches to inhibit angiogenesis and metastasis may potentially lead to a better therapeutic option for ccRCC. Among all the types of cancer, renal cancer samples exhibited the maximum upregulation of ApoC1 as referred to in the Oncomine database. The expression of ApoC1 was increased accompanied by ccRCC progression. A high level of ApoC1 was closely related to poor survival time in ccRCC patients. Furthermore, ApoC1 was over-expressed in the highly invasive ccRCC cells as compared to that in the low-invasive ccRCC cells. Besides, ApoC1 promoted metastasis of ccRCC cells via EMT pathway, whereas depletion of ApoC1 alleviated these effects. ApoC1 as a novel pro-metastatic factor facilitates the activation of STAT3 and enhances the metastasis of ccRCC cells. Meanwhile, ApoC1 in the exosomes were transferred from the ccRCC cells to the vascular endothelial cells and promoted metastasis of the ccRCC cells via activating STAT3. Finally, the metastatic potential of the ccRCC cells driven by ApoC1 was suppressed by DPP-4 inhibition. Our study not only identifies a novel ApoC1-STAT3 pathway in ccRCC metastasis but also provides direction for the exploration of novel strategies to predict and treat metastatic ccRCC in the future.


Assuntos
Apolipoproteína C-I/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Fator de Transcrição STAT3/metabolismo , Compostos de Anilina/farmacologia , Apolipoproteína C-I/antagonistas & inibidores , Apolipoproteína C-I/biossíntese , Apolipoproteína C-I/genética , Compostos de Benzilideno/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metástase Neoplásica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Análise de Sobrevida , Transcrição Gênica , Células Tumorais Cultivadas
14.
Cancer Biol Med ; 17(2): 387-400, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587776

RESUMO

Objective: Mcl-1 overexpression confers acquired resistance to Bcl-2 inhibitors in non-small cell lung cancer (NSCLC), but no direct Mcl-1 inhibitor is currently available for clinical use. Thus, novel therapeutic strategies are urgently needed to target Mcl-1 and sensitize the anti-NSCLC activity of Bcl-2 inhibitors. Methods: Cell proliferation was measured using sulforhodamine B and colony formation assays, and apoptosis was detected with Annexin V-FITC staining. Gene expression was manipulated using siRNAs and plasmids. Real-time PCR and Western blot were used to measure mRNA and protein levels. Immunoprecipitation and immunofluorescence were used to analyze co-localization of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and Mcl-1. Results: Suppression of DYRK1A resulted in reduced Mcl-1 expression in NSCLC cells, whereas overexpression of DYRK1A significantly increased Mcl-1 expression. Suppression of DYRK1A did not alter Mcl-1 mRNA levels, but did result in an accelerated degradation of Mcl-1 protein in NSCLC cells. Furthermore, DYRK1A mediated proteasome-dependent degradation of Mcl-1 in NSCLC cells, and DYRK1A co-localized with Mcl-1 in NSCLC cells and was co-expressed with Mcl-1 in tumor samples from lung cancer patients, suggesting that Mcl-1 may be a novel DYRK1A substrate. We showed that combined therapy with harmine and Bcl-2 antagonists significantly inhibited cell proliferation and induced apoptosis in NSCLC cell lines as well as primary NSCLC cells. Conclusions: Mcl-1 is a novel DYRK1A substrate, and the role of DYRK1A in promoting Mcl-1 stability makes it an attractive target for decreasing Bcl-2 inhibitor resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , RNA Interferente Pequeno/genética , Quinases Dyrk
16.
Phytomedicine ; 68: 153189, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32070867

RESUMO

BACKGROUND: NSCLC is the major type of lung cancer and the survival rates of NSCLC patients remain low. AZD9291 is a third-generation EGFR-TKI and approved to treat NSCLC patients harboring EGFR T790M mutation and common targetable activating EGFR mutations, but it has a limited effect for wtEGFR NSCLC. PURPOSE: The current study investigated whether shikonin could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells. METHODS: SRB and colony formation assay were used to detect the proliferation of NSCLC cells, propidium iodide staining was performed to detect the apoptosis, ROS was analyzed using DCFH-DA staining, and western blot was used to detect the expression of indicated proteins. RESULTS: We demonstrated that shikonin, a natural ROS inducer, could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells. In addition, shikonin increased AZD9291-induced apoptosis accompanying with the generation of ROS and activation of ER stress. Furthermore, ROS inhibition by NAC or GSH reversed the apoptosis induced by shikonin plus AZD9291, and recovered the ER stress activated by combination treatment, indicating that ROS mediated ER stress played a vital role in this combination therapy. Moreover, shikonin increased the anticancer activity of AZD9291 in primary wtEGFR NSCLC cells through ROS-mediated ER stress. CONCLUSION: Our study suggests that combining shikonin with AZD9291 is a promising therapeutic strategy for treating wtEGFR NSCLC patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Naftoquinonas/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo
17.
J Cell Mol Med ; 23(11): 7427-7437, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454149

RESUMO

DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR-sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild-type EGFR remains modest. We showed that DYRK1A repression could enhance the anti-cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild-type NSCLC cells. In addition, harmine could enhance the anti-NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti-cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild-type NSCLC patients.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases Dyrk
18.
Theranostics ; 9(12): 3515-3525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281494

RESUMO

Tumor imaging tools with high specificity and sensitivity are needed to aid the boundary recognition in solid tumor diagnosis and surgical resection. In this study, we developed a near infra-red (NIR) probe (P6) for in vitro/in vivo tumor imaging on the basis of the dual strategy of cancer cell targeting and stimulus-dependent activation. The selective imaging capacity towards cancer cells of P6 was thoroughly investigated, and the potential mechanisms of endocytosis were preliminary explored. Methods: GSH-activated biotin labelled NIR probe (P6) was designed, synthesized and characterized. The GSH responsive properties were systematically illustrated through UV-vis, fluorescent tests and LC-MS analysis. In vitro fluorescent imaging of probe P6 was collected in various living cancer cell lines (i.e. SW480, HGC-27, H460, BxPC-3, KHOS) and normal cell lines (i.e. BEAS-2B, HLF-1, THP1) under confocal laser scanning microscopy. Probe P6 was further applied to image primary human cancer cells which were freshly isolated from the peritoneal carcinoma and rectal cancer patients. Serial sections of human tumor tissues were collected and sent for H&E (hematoxylin-eosin) staining and P6 imaging. Live fluorescent and photoacoustic imaging were used to investigate the in vivo imaging of P6 in both tumor and normal tissues in HGC-27 and KHOS xenograft model. Results: Probe P6 could be recognized and transported into cancer cells by tumor specific biotin receptors and efficiently be triggered by GSH to release fluorophore 4. In fact, the cellular uptake of P6 could be partially blocked by the addition of free biotin. Furthermore, probe P6 could image various cancer cell lines, as well as primary cancer cells, exhibiting a ten-fold increase in fluorescence intensity over normal cells. In freshly dissected cancer tissues, P6 fluorescent imaging distinguished the cancerous area under confocal laser scanning microscopy, which was exact the same area as indicated by H&E staining. We also found that P6 exhibited superior selectivity against cancer tissues by local injection. Conclusion: In this study, we developed a dual-modal NIR probe P6 with enhanced cellular uptake into cancer cells and environmental stimulus triggered fluorescence. Our strategy provided a novel insight into the development of imaging tools that could be potentially used for fluorescent image-guided cancer boundary recognition and possibly cancer diagnosis.


Assuntos
Biotina/metabolismo , Carcinoma/diagnóstico por imagem , Glutationa/metabolismo , Sondas Moleculares/síntese química , Sondas Moleculares/metabolismo , Imagem Óptica/métodos , Osteossarcoma/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endocitose , Humanos , Modelos Biológicos , Transplante de Neoplasias , Técnicas Fotoacústicas/métodos , Transplante Heterólogo
19.
Exp Ther Med ; 17(6): 4547-4553, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31186678

RESUMO

Hepatocellular carcinoma (HCC) is associated with some of the highest cancer-associated mortality rates. Histone deacetylase (HDAC) inhibitors anti-HCC activities have been shown to promote Snail-induced metastasis. In the present study, it was shown that BAY 87-2243, a hypoxia-inducible transcription factor-1α inhibitor, could enhance the anti-HCC effects of HDAC inhibitors, including trichostatin A and vorinostat. In addition, BAY 87-2243 plus HDAC inhibitors exhibited synergistic cytotoxicity and induced significant cell death in Hep3B cells. Additionally, BAY 87-2243 combined with HDAC inhibitors-treated Hep3B cells formed fewer and smaller colonies as compared with either the control or single agent-treated cells. Furthermore, glycogen synthase kinase-3ß might be involved in the enhanced cell death induced by BAY 87-2243 plus HDAC inhibitors. The present data also indicated that BAY 87-2243 combined with HDAC inhibitors could suppress the migration of Hep3B cells, and BAY 87-2243 could reverse the HDAC inhibitor-induced Snail activation in Hep3B cells. In conclusion, BAY 87-2243 combined with HDAC inhibitors might be an attractive chemotherapy strategy for HCC therapy.

20.
Acta Pharmacol Sin ; 40(4): 546-555, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29930276

RESUMO

Despite more effective chemotherapy combined with limb-salvage surgery for the osteosarcoma treatment, survival rates for osteosarcoma patients have stagnated over the past three decades due to the poor prognosis. Osteosarcoma cancer stem cells (OSCs) are responsible for the growth and metastasis of osteosarcoma. The existence of OSCs offers a theoretical explanation for therapeutic failures including tumor recurrence, metastasis, and drug resistance. Understanding the pathways that regulate properties of OSCs may shed light on mechanisms that lead to osteosarcoma and suggest better modes of treatment. In this study, we showed that the expression level of Kruppel-like factor 4 (KLF4) is highly associated with human osteosarcoma cancer stemness. KLF4-overexpressed osteosarcoma cells displayed characteristics of OSCs: increased sphere-forming potential, enhanced levels of stemness-associated genes, great chemoresistance to adriamycin and CDDP, as well as more metastasis potential. Inversely, KLF4 knockdown could reduce colony formation in vitro and inhibit tumorigenesis in vivo, supporting an oncogenic role for KLF4 in osteosarcoma pathogenesis. Furthermore, KLF4 was shown to activate the p38 MAPK signaling pathway to promote cancer stemness. Altogether, our studies uncover an essential role for KLF4 in regulation of OSCs and identify KLF4-p38 MAPK axis as a potential therapeutic target for osteosarcoma treatment.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Fenótipo , RNA Interferente Pequeno/farmacologia , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA