RESUMO
Enhanced recovery after surgery (ERAS) has been used safely and effectively in patients with gastric cancer. Our aim was to evaluate the short-term outcomes of total gastrectomy (TG) versus distal gastrectomy (DG) for gastric cancer under ERAS. A prospectively collected database of 1349 patients with gastric cancer who underwent TG or DG between January 2016 and September 2022 was retrospectively analyzed. Propensity score matching analysis was used at a ratio of 1:1 to reduce confounding effects, and perioperative clinical outcomes were compared between the two groups. The primary outcome was overall postoperative complications (POCs). Secondary outcomes comprised time to bowel function recovery, postoperative hospital stay, mortality, and 30-day readmission rate. Of 1349 identified patients, 296 (21.9%) experienced overall POCs. Before matching, multivariable analysis revealed that age, body mass index, diabetes, operation time, and extent of gastrectomy were independent risk factors for overall POCs. After matching, each group comprised 495 patients, and no significant differences were observed between the groups for all parameters except tumor location. Compared with TG, DG was associated with significantly earlier days to first flatus and to eating a soft diet, and shorter postoperative hospital stay (P < 0.05). The incidence of overall- and severe POCs (Clavien-Dindo grade ≥ IIIa) in the TG group was significantly higher vs. the DG group (P < 0.05). There was no significant difference in the number of days to eating a liquid diet, or mortality and 30-day readmission rates between the groups (P > 0.05). In the subgroup analysis for middle-third gastric cancer, the TG group experienced higher rates of overall- and severe POCs, with a longer postoperative hospital stay. Compared with DG, patients who underwent TG had higher POC rates, slower recovery of bowel function, and longer duration of hospitalization under ERAS. Therefore, caution is needed when initiating early feeding for patients who undergo TG.
Assuntos
Recuperação Pós-Cirúrgica Melhorada , Gastrectomia , Tempo de Internação , Complicações Pós-Operatórias , Pontuação de Propensão , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Gastrectomia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Readmissão do Paciente/estatística & dados numéricos , Fatores de Risco , Recuperação de Função FisiológicaRESUMO
Endoscopic endonasal surgery is a medical procedure that utilizes an endoscopic video camera to view and manipulate a surgical site accessed through the nose. Despite these surgeries being video recorded, these videos are seldom reviewed or even saved in patient files due to the size and length of the video file. Editing to a manageable size may necessitate viewing 3 h or more of surgical video and manually splicing together the desired segments. We suggest a novel multi-stage video summarization procedure utilizing deep semantic features, tool detections, and video frame temporal correspondences to create a representative summarization. Summarization by our method resulted in a 98.2% reduction in overall video length while preserving 84% of key medical scenes. Furthermore, resulting summaries contained only 1% of scenes with irrelevant detail such as endoscope lens cleaning, blurry frames, or frames external to the patient. This outperformed leading commercial and open source summarization tools not designed for surgery, which only preserved 57% and 46% of key medical scenes in similar length summaries, and included 36% and 59% of scenes containing irrelevant detail. Experts agreed that on average (Likert Scale = 4) that the overall quality of the video was adequate to share with peers in its current state.
Assuntos
Endoscopia , Base do Crânio , HumanosRESUMO
In recent years, Bisphenol S (BPS) has increasingly been used as an alternative to Bisphenol A (BPA) in food, paper, and personal care products. It is imperative to clarify the relationship between BPS and tumors in order to treat and prevent diseases. This study discovered a new method for predicting tumor correlations between BPS interactive genes. According to analyses conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, interactive genes were primarily found in gastric cancer. Based on gene-targeted prediction and molecular docking, BPS appears to exert potential gastric cancer-causing effects through estrogen receptor 1 (ESR1). In addition, gastric cancer patients' prognosis could be accurately predicted by a bisphenol-based prognostic prediction model. Subsequently, the proliferation and migration abilities of gastric cancer cells were further demonstrated to be significantly enhanced by BPS. Similarly, molecular docking analysis revealed that melatonin is also highly correlated with gastric cancer and BPS. In cell proliferation and migration assays, melatonin and BPS exposure inhibited the invasion abilities of gastric cancer cells compared to BPS-exposure. Our research provided a new direction for the exploration the correlation between cancer and environmental toxicity.
Assuntos
Melatonina , Neoplasias Gástricas , Humanos , Receptor alfa de Estrogênio , Melatonina/farmacologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/genética , Simulação de Acoplamento Molecular , Compostos Benzidrílicos/toxicidadeRESUMO
BACKGROUND: Prolonged postoperative ileus (PPOI) is a major complication in patients undergoing colorectal resection. The aim of this study was to analyze the risk factors contributing to PPOI, and to develop an effective nomogram to determine the risks of this population. METHODS: A total of 1,254 patients with colorectal cancer who underwent radical colorectal resection at Fujian Cancer Hospital from March 2016 to August 2021 were enrolled as a training cohort in this study. Univariate analysis and multivariate logistic regressions were performed to determine the correlation between PPOI and clinicopathological characteristics. A nomogram predicting the incidence of PPOI was constructed. The cohort of 153 patients from Fujian Provincial Hospital were enrolled as a validation cohort. Internal and external validations were used to evaluate the prediction ability by area under the receiver operating characteristic curve (AUC) and a calibration plot. RESULTS: In the training cohort, 128 patients (10.2%) had PPOI after colorectal resection. The independent predictive factors of PPOI were identified, and included gender, age, surgical approach and intraoperative fluid overload. The AUC of nomogram were 0.779 (95% CI: 0.736-0.822) and 0.791 (95%CI: 0.677-0.905) in the training and validation cohort, respectively. The two cohorts of calibration plots showed a good consistency between nomogram prediction and actual observation. CONCLUSIONS: A highly accurate nomogram was developed and validated in this study, which can be used to provide individual prediction of PPOI in patients after colorectal resection, and this predictive power can potentially assist surgeons to make the optimal treatment decisions.
Assuntos
Íleus , Complicações Pós-Operatórias , HumanosRESUMO
PURPOSE: Endoscopic sinus surgery (ESS) is typically guided under preoperative computed tomography (CT), which increasingly diverges from actual patient anatomy as the surgery progresses. Studies have reported that the revision surgery rate in ESS ranges between 28 and 47%. This paper presents a method that can update the preoperative CT in real time to improve surgical completeness in ESS. APPROACH: The work presents and compares three novel methods that use instrument motion data and anatomical structures to predict surgical modifications in real time. The methods use learning techniques, such as nonparametric filtering and Gaussian process regression, to correlate surgical modifications with instrument tip positions, tip trajectories, and instrument shapes. Preoperative CT image sets are updated with modification predictions to serve as a virtual intraoperative CT. RESULTS: The three methods were compared in eight ESS cadaver cases, which were performed by five surgeons and included the following representative ESS operations: maxillary antrostomy, uncinectomy, anterior and posterior ethmoidectomy, and sphenoidotomy. Experimental results showed accuracy metrics that were clinically acceptable with dice similarity coefficients > 86%, with F-score > 92% and precision > 89.91% in surgical completeness evaluation. Among the three methods, the tip trajectory-based estimator had the highest precision of 96.87%. CONCLUSIONS: This work demonstrated that virtually modified intraoperative CT scans improved the consistency between the actual surgical scene and the reference model, and could lead to improved surgical completeness in ESS. Compared to actual intraoperative CT scans, the proposed method has no impact on existing surgical protocols, does not require extra hardware, does not expose the patient to radiation, and does not lengthen time under anesthesia.
Assuntos
Endoscopia , Seios Paranasais , Cadáver , Humanos , Seios Paranasais/diagnóstico por imagem , Seios Paranasais/cirurgia , Tomografia Computadorizada por Raios XRESUMO
We report a case of interdigitating dendritic cell sarcoma (IDCS) originating from the adrenal gland. A 57-year-old middle-aged woman with no previous history of malignancy came to our hospital after color Doppler ultrasound revealed a right adrenal mass. An abdominal computed tomography scan also showed an adrenal mass. Postoperative pathology confirmed the diagnosis of IDCS. After complete surgical removal of the adrenal tumor, the patient has been disease-free for 1 year. IDCS may have a good prognosis after surgical resection. To our knowledge, this is only the second reported case of IDCS in the adrenal region.
Assuntos
Sarcoma de Células Dendríticas Interdigitantes , Linfoma não Hodgkin , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Circulating tumor cells (CTCs) have been regarded as an independent prognostic marker for metastatic castration-resistant prostate cancer (mCRPC). Its prognostic value, however, in nonmetastatic prostate cancer (NMPC) is still unclear. PURPOSE: To elucidate whether CTCs can predict the biochemical recurrence (BCR) in NMPC patients following radical prostatectomy (RP) or radiotherapy (RT). METHODS: PubMed, Cochrane Database, and Embase and the references in relevant studies were systematically searched. Studies that investigated the correlation of CTCs and BCR in NMPC patients after RP or RT were identified and reviewed. Overall odds ratio (OR) of BCR in such patients with/without CTCs was pooled. We also calculated and pooled overall prevalence of BCR in such CTC-positive patients. RESULTS: In total, 12 studies comprising 1917 participants were eligible for the meta-analysis and showed that the presence of secondary circulating tumor cells (SCTCs) is associated with a higher BCR rate of 59% (95% CI: 22%-88%) in patients with NMPC after RP or RT (OR = 6.12; 95% CI: 2.22-16.85; P < 0.001). However, regardless of the presence of primary circulating tumor cells (PCTCs), it has not been shown to be associated with higher BCR. CONCLUSIONS: Our research demonstrated that SCTC-positive patients are associated with higher BCR compared to SCTC-negative patients in NMPC. Therefore, it is recommended that NMPC patients undergo CTC surveillance intensively after RP or RT.
Assuntos
Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/patologia , Prostatectomia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Humanos , Incidência , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia , Viés de Publicação , Células Tumorais CultivadasRESUMO
BACKGROUND: In previous studies, we provided evidence suggesting the involvement of γ-synuclein in growth, invasion, and metastasis of colon cancer cells in vitro and in vivo. Among γ-synuclein downstream genes, the microtubule-associated protein 1 Light Chain 3 (LC3), an autophagy gene, was screened by gene expression profile chip analysis. OBJECTIVE: We planned to investigate the functional effects of γ-synuclein on autophagy induced by ER stress in colon cancer cells. METHODS: We investigated the functional effects of γ-synuclein on autophagy and apoptosis induced by Thapsigargin (TG), ER stress-inducing agent, in colon cancer cell lines using immunofluorescence staining, RT-PCR, western blot, CCK8 test, flow cytometry analysis, and transmission electron microscopy. To further determine how γ-synuclein regulated autophagy and apoptosis, PD98059 (ERK inhibitor), SP600125 (ERK inhibitor), anisomycin (JNK activator), and c-Jun siRNA were used respectively in γ-synuclein siRNA transfected HCT116 cells. Then, autophagy proteins, apoptosis proteins, and pathway proteins were detected by western blot analysis. The expression of autophagy genes was assessed by RT-PCR. RESULTS: Our data showed that ER stress-induced colon cancer cells autophagy mainly in the early stage (0-24h) and apoptosis mainly in the late stage (24-48h). ER stress up-regulated γ-synuclein gene and protein expression in colon cancer cells, accompanied by autophagy. γ-synuclein protected HCT116 cells by enhancing autophagy in the early stage (0-24h) through activation of ERK and JNK pathway and inhibiting apoptosis in the late stage (24-48h) through inhibition of the JNK pathway. γ-synuclein could promote autophagy via the JNK pathway activation of ATG genes, LC3, Beclin 1, and ATG7. γ-synuclein may play a role in the transition between autophagy and apoptosis in our model. CONCLUSION: Overall, we provided the first experimental evidence to show that γ-synuclein may play an important role in autophagy that protects colon cancer cells from ER stress. Therefore, our data suggest a new molecular mechanism for γ-synuclein-mediated CRC progression.
Assuntos
Autofagia , Neoplasias do Colo/metabolismo , Proteínas de Neoplasias/metabolismo , gama-Sinucleína/metabolismo , Proliferação de Células , Neoplasias do Colo/patologia , Estresse do Retículo Endoplasmático , Humanos , Células Tumorais CultivadasRESUMO
In the context of Minimally Invasive Surgery, estimating depth from stereo endoscopy plays a crucial role in three-dimensional (3D) reconstruction, surgical navigation, and augmentation reality (AR) visualization. However, the challenges associated with this task are three-fold: 1) feature-less surface representations, often polluted by artifacts, pose difficulty in identifying correspondence; 2) ground truth depth is difficult to estimate; and 3) an endoscopy image acquisition accompanied by accurately calibrated camera parameters is rare, as the camera is often adjusted during an intervention. To address these difficulties, we propose an unsupervised depth estimation framework (END-flow) based on an unsupervised optical flow network trained on un-rectified binocular videos without calibrated camera parameters. The proposed END-flow architecture is compared with traditional stereo matching, self-supervised depth estimation, unsupervised optical flow, and supervised methods implemented on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) Challenge dataset. Experimental results show that our method outperforms several state-of-the-art techniques and achieves a close performance to that of supervised methods.
RESUMO
BACKGROUND: Genetic alterations play an important role in the progression of colorectal cancer (CRC). Identifying new biomarkers to assess the prognosis of patients with CRC is critical. Cartilage intermediate layer protein 2 (CILP2) gene, screened from TCGA database by bioinformatics, may be closely related to the progression of CRC. CILP2 was barely reported with clinical features of tumors. MATERIALS AND METHODS: Clinical information and RNA-seq data were derived from TCGA colorectal carcinoma cohort. CILP2 expression at mRNA level was estimated by bioinformatical analysis of TCGA cases. Tissue microarray (TMA) was constructed containing paraffin-embedded 64 pairs of CRC and matched adjacent normal tissues. The expression at the protein level was detected in 64 pairs of CRC and matched adjacent normal tissues by immunohistochemical analysis. CILP2 expression level and its clinical value were estimated by bioinformatical analysis with linear and logistic regression. Survival analysis was performed between high and low groups of CILP2 expression by Cox regression analysis, and the P value was calculated by the log-rank test. The Kaplan-Meier curves were tested by the log-rank test. RESULTS: CILP2 was statistically significantly higher expressed in the CRC tissues when compared with paired adjacent normal tissues in TCGA cohort (P < 0.001) and in the TMA cohort (P = 0.001). Also, CILP2 high expression was strongly correlated with T3/4 stage (P = 0.001), N1/2/3 stage (P = 0.005), M1 stage (P = 0.048), and higher clinical stage (UICC 2010 stage) (P < 0.001) in TCGA cohort, and also positively associated with T3/4 stage (P = 0.022) and higher clinical stage (UICC 2010 stage) (P = 0.03) in TMA cohort. Furthermore, CILP2 overexpression predicted poor prognosis and could be an independent prognostic factor (P = 0.003). CONCLUSION: We revealed that CILP2 is associated with advanced stages and could play a role as an independent predictor of poor survival in CRC.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Humanos , Prognóstico , Análise de SobrevidaRESUMO
Colorectal cancer (CRC) becomes the third leading cause of cancer-related deaths worldwide recently. The prognosis of CRC is still poor in decades, and targeted therapy is still a potential effective treatment. Long non-coding RNAs (lncRNAs) could regulate series of cellular functions and developmental processes. LncRNA-SPRY4-IT1 (GenBank ID AK024556) is derived from an intron of the SPRY4 gene, which was highly expressed in melanoma cells and affected the progression of multiple types of cancers. However, the mechanism of SPRY4-IT1 in CRC progression remains unclear. Herein, we found the high level of SPRY4-IT1 in human colorectal cancer (CRC) tissues and cells, and correlated with patients' prognosis. We further noticed that SPRY4-IT1 regulated CRC cell growth and glycolysis, and promoting PDK1 expression. Our data further confirmed that SPRY4-IT1 regulated CRC progression targeting PDK1. We therefore thought SPRY4-IT1 could serve as a promising molecular target for the treatment of CRC.
RESUMO
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
Assuntos
Biologia Computacional/métodos , Previsões/métodos , RNA Circular/análise , Algoritmos , Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Confiabilidade dos Dados , Aprendizado Profundo/tendências , Glioma/genética , Humanos , MicroRNAs/genética , Distribuição Normal , Fatores de Risco , Sensibilidade e EspecificidadeRESUMO
Emerging evidence has shown microRNAs (miRNAs) play an important role in human disease research. Identifying potential association among them is significant for the development of pathology, diagnose and therapy. However, only a tiny portion of all miRNA-disease pairs in the current datasets are experimentally validated. This prompts the development of high-precision computational methods to predict real interaction pairs. In this paper, we propose a new model of Logistic Model Tree for predicting miRNA-Disease Association (LMTRDA) by fusing multi-source information including miRNA sequences, miRNA functional similarity, disease semantic similarity, and known miRNA-disease associations. In particular, we introduce miRNA sequence information and extract its features using natural language processing technique for the first time in the miRNA-disease prediction model. In the cross-validation experiment, LMTRDA obtained 90.51% prediction accuracy with 92.55% sensitivity at the AUC of 90.54% on the HMDD V3.0 dataset. To further evaluate the performance of LMTRDA, we compared it with different classifier and feature descriptor models. In addition, we also validate the predictive ability of LMTRDA in human diseases including Breast Neoplasms, Breast Neoplasms and Lymphoma. As a result, 28, 27 and 26 out of the top 30 miRNAs associated with these diseases were verified by experiments in different kinds of case studies. These experimental results demonstrate that LMTRDA is a reliable model for predicting the association among miRNAs and diseases.
Assuntos
Biologia Computacional/métodos , Predisposição Genética para Doença/genética , Modelos Logísticos , MicroRNAs/genética , Algoritmos , Área Sob a Curva , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de RNARESUMO
IMPORTANCE: There is no imaging standard to model nasal cartilage for the planning of rhinoplasty procedures. Preoperative visualization of cartilage may improve objective evaluation of nasal deformities, surgical planning, and surgical reconstruction. OBJECTIVES: To evaluate the feasibility of visualizing nasal cartilage using high resolution micro-computed tomography (CT) compared with the criterion standard of pathologic findings in a cadaveric specimen and to evaluate its accuracy compared with various clinical CT protocols. DESIGN, SETTING, AND PARTICIPANTS: Anatomic study at the University of Washington using single human cadaveric nasal specimens performed from July 10, 2017, to March 30, 2018. INTERVENTIONS: A micro-CT acquisition with 60-micron resolution was obtained of a nasal specimen. The specimen was then scanned with 5 different clinical CT protocols to span both clinical care and machine limits. The specimen was then sectioned in 5-mm axial slices for pathologic analysis. MAIN OUTCOMES AND MEASURES: Micro-CT images were registered to pathologic specimen cross-sections using a graphite fiducial system. Cartilage substructures were manually segmented and analyzed. A library of matched images across the micro-CT and various clinical CT protocols was then developed. Region of interest analysis was performed for each of the cartilage structures and their boundaries on clinical CT protocols and micro-CT, with the outcome of mean (SD) density using Hounsfield units. RESULTS: A single human cadaveric nasal specimen was used to obtain the following results. Lower lateral cartilage, upper lateral cartilage, and septal cartilage were accurately delineated on the micro-CT images compared with pathologic findings. The mean absolute deviation from pathologic findings was 0.30 mm for septal cartilage thickness, 0.98 mm for maximal upper lateral cartilage length, and 1.40 mm for maximal lower lateral cartilage length. On clinical CT protocols, only septal cartilage was well discriminated from boundary. Higher radiation dose resulted in more accurate density measurements of cartilage, but it did not ultimately improve ability to discriminate cartilage. CONCLUSIONS AND RELEVANCE: The results of this anatomic study may represent a notable step toward advancing knowledge of the capabilities and pitfalls of nasal cartilage visualization on CT. Nasal cartilage visualization was feasible on the micro-CT compared with pathologic findings. Future research may further examine the barriers to accurately visualizing upper lateral cartilage and lower lateral cartilage, a prerequisite for clinical application. LEVEL OF EVIDENCE: NA.
Assuntos
Cartilagens Nasais/diagnóstico por imagem , Rinoplastia , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X/métodos , Cadáver , Estudos de Viabilidade , Humanos , Cartilagens Nasais/patologiaRESUMO
Background Most existing objective surgical motion analysis schemes are limited to structured surgical tasks or recognition of motion patterns for certain categories of surgeries. Analyzing instrument motion data with respect to anatomical structures can break the limit, and an anatomical region segmentation algorithm is required for the analysis. Methods An atlas was generated by manually segmenting the skull base into nine regions, including left/right anterior/posterior ethmoid sinuses, frontal sinus, left and right maxillary sinuses, nasal airway, and sphenoid sinus. These regions were selected based on anatomical and surgical significance in skull base and sinus surgery. Six features, including left and right eye center, nasofrontal beak, anterior tip of nasal spine, posterior edge of hard palate at midline, and clival body at foramen magnum, were used for alignment. The B-spline deformable registration was adapted to fine tune the registration, and bony boundaries were automatically extracted for final precision improvement. The resultant deformation field was applied to the atlas, and the motion data were clustered according to the deformed atlas. Results Eight maxillofacial computed tomography scans were used in experiments. One was manually segmented as the atlas. The others were segmented by the proposed method. Motion data were clustered into nine groups for every dataset and outliers were filtered. Conclusions The proposed algorithm improved the efficiency of motion data clustering and requires limited human interaction in the process. The anatomical region segmentations effectively filtered out the portion of motion data that are out of surgery sites and grouped them according to anatomical similarities.
RESUMO
Haptic feedback is a critical but a clinically missing component in robotic Minimally Invasive Surgeries. This paper proposes a Gaussian Process Regression(GPR) based scheme to address the gripping force estimation problem for clinically commonly used elongated cable-driven surgical instruments. Based on the cable-driven mechanism property studies and surgical robotic system properties, four different Gaussian Process Regression filters were designed and analyzed, including: one GPR filter with 2-dimensional inputs, one GPR filter with 3-dimensional inputs, one GPR Unscented Kalman Filter (UKF) with 2-dimensional inputs, and one GPR UKF with 3-dimensional inputs. The four proposed methods were compared with the dynamic model based UKF filter on a 10mm gripper on the Raven-II surgical robot platform. The experimental results demonstrated that the four proposed methods outperformed the dynamic model based method on precision and reliability without parameter tuning. And surprisingly, among the four methods, the simplest GPR Filter with 2-dimensional inputs has the best performance.
RESUMO
We present a fully automatic method for segmenting orbital structures (globes, optic nerves, and extraocular muscles) in CT images. Prior anatomical knowledge, such as shape, intensity, and spatial relationships of organs and landmarks, were utilized to define a volume of interest (VOI) that contains the desired structures. Then, VOI was used for fast localization and successful segmentation of each structure using predefined rules. Testing our method with 30 publicly available datasets, the average Dice similarity coefficient for right and left sides of [0.81, 0.79] eye globes, [0.72, 0.79] optic nerves, and [0.73, 0.76] extraocular muscles were achieved. The proposed method is accurate, efficient, does not require training data, and its intuitive pipeline allows the user to modify or extend to other structures.
RESUMO
Objectives Describe instrument motion during live endoscopic skull base surgery (ESBS) and evaluate kinematics within anatomic regions. Design Case series. Setting Tertiary academic center. Participants A single skull base surgeon performed six anterior skull base approaches to the pituitary. Main Outcomes and Measures Time-stamped instrument coordinates were recorded using an optical tracking system. Kinematics (i.e., mean cumulative instrument travel, velocity, acceleration, and angular velocity) was calculated by anatomic region including nasal vestibule, anterior and posterior ethmoid, sphenoid, and lateral opticocarotid recess (lOCR) regions. Results We observed mean (standard deviation, SD) velocities of 6.14 cm/s (1.55) in the nasal vestibule versus 1.65 cm/s (0.34) near the lOCR. Mean (SD) acceleration was 7,480 cm/s 2 (5790) in the vestibule versus 928 cm/s 2 (662) near the lOCR. Mean (SD) angular velocity was 17.2 degrees/s (8.31) in the vestibule and 5.37 degrees/s (1.09) near the lOCR. We observed a decreasing trend in the geometric mean velocity, acceleration, and angular velocity when approaching the pituitary ( p < 0.001). Conclusion Using a novel method for analyzing instrument motion during live ESBS, we observed a decreasing trend in kinematics with proximity to the pituitary. Additional characterization of surgical instrument motion is paramount for optimizing patient safety and training.
RESUMO
OBJECTIVE: To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. DESIGN: We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. CONCLUSIONS: Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.
Assuntos
Algoritmos , Endoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Cavidade Nasal , Procedimentos Neurocirúrgicos/métodos , Base do Crânio , Humanos , Monitorização Intraoperatória , Movimento (Física) , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/cirurgia , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia , Cirurgia Assistida por Computador/métodos , Instrumentos CirúrgicosRESUMO
PURPOSE: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms. METHODS: In this work, we describe and present the results of the Head and Neck Auto-Segmentation Challenge 2015, a satellite event at the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 conference. Six teams participated in a challenge to segment nine structures in the head and neck region of CT images: brainstem, mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. RESULTS: This paper presents the quantitative results of this challenge using multiple established error metrics and a well-defined ranking system. The strengths and weaknesses of the different auto-segmentation approaches are analyzed and discussed. CONCLUSIONS: The Head and Neck Auto-Segmentation Challenge 2015 was a good opportunity to assess the current state-of-the-art in segmentation of organs at risk for radiotherapy treatment. Participating teams had the possibility to compare their approaches to other methods under unbiased and standardized circumstances. The results demonstrate a clear tendency toward more general purpose and fewer structure-specific segmentation algorithms.