Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 1402602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390371

RESUMO

This study aimed to evaluate the effects of combined replacement of fishmeal (FM) and fish oil (FO) with poultry byproduct meal (PBM) and mixed oil (MO, poultry oil: coconut oil = 1 : 1) on growth performance, body composition and muscle quality of tiger puffer (Takifugu rubripes). Fish with an average initial body weight of 14.29 g were selected for the feeding experiment. FM accounting for 0%, 5%, and 10% of the diet was replaced by PBM. For each grade of FM replacement, 5% FO or MO was used as added oil. The six experimental diets were designated as FO-FM, MO-FM, FO-5PBM, MO-5PBM, FO-10PBM, and MO-10PBM, respectively. Each treatment was performed in triplicate with 30 fish per replicate. The feeding period was 45 days. There was no significant difference in growth performance among the groups. Dietary supplementation of both PBM and MO had marginal effects on whole-fish proximate composition, except that dietary MO supplementation significantly increased the liver moisture content. In serum, there were no significant differences in contents of triglyceride, total cholesterol, total bile acid, and protein carbonyl among groups, but the malondialdehyde content was reduced by MO. The fatty acid composition in fish mirrored those in the diets, but the omega-3 sparing effects of saturated and monounsaturated fatty acid in MO can still be observed. Dietary PBM and MO had marginal effects on free amino acid composition and texture of fish muscle, but exerted complicated effects on the muscle volatile flavor compound composition. In conclusion, combined fishmeal (10% of the diet) and fish oil (5% of the diet) replacement with poultry byproduct and mixed oil (poultry oil + coconut oil) had no adverse effects on the growth performance and body proximate composition of farmed tiger puffer. However, these replacements changed the muscle flavor compound profile.

2.
ACS Appl Mater Interfaces ; 8(29): 18797-805, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27377263

RESUMO

VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA