Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6685, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107301

RESUMO

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.


Assuntos
Heterozigoto , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Mutação , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Imunidade Inata/genética , Exonucleases/metabolismo , Exonucleases/genética , Células HEK293 , Exorribonucleases/genética , Exorribonucleases/metabolismo , Citosol/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Genes Dominantes
2.
Adv Sci (Weinh) ; 11(7): e2305922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084438

RESUMO

Immune checkpoint inhibitors (ICIs) show promise as second-line treatment for advanced bladder cancer (BLCA); however, their responsiveness is limited by the immune evasion mechanisms in tumor cells. This study conduct a Cox regression analysis to screen mRNA-binding proteins and reveals an association between Ras GTPase-activating protein-binding protein 1 (G3BP1) and diminished effectiveness of ICI therapy in patients with advanced BLCA. Subsequent investigation demonstrates that G3BP1 enhances immune evasion in BLCA cells by downregulating major histocompatibility complex class I (MHC-I) through phosphoinositide 3-kinase (PI3K)/Akt signaling activation. Mechanistically, G3BP1 interacts with splicing factor synergistic lethal with U5 snRNA 7 (SLU7) to form a complex with poly(A)-binding protein cytoplasmic 1 and eukaryotic translation initiation factor 4 gamma 1. This complex stabilizes the closed-loop structure of the mRNAs of class IA PI3Ks and consequently facilitates their translation and stabilization, thereby activating PI3K/Akt signaling to downregulate MHC-I. Consistently, targeting G3BP1 with epigallocatechin gallate (EGCG) impedes immune evasion and sensitizes BLCA cells to anti-programmed cell death (PD)-1 antibodies in mice. Thus, G3BP1 and SLU7 collaboratively contribute to immune evasion in BLCA, indicating that EGCG is a precision therapeutic agent to enhance the effectiveness of anti-PD-1 therapy.


Assuntos
DNA Helicases , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Evasão da Resposta Imune , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Transporte/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Fatores de Processamento de RNA
3.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458031

RESUMO

Compared with the polycrystalline system, the single-crystalline ternary cathode material has better cycle stability because the only primary particles without grain boundaries effectively alleviate the formation of micro/nanocracks and retain better structural integrity. Therefore, it has received extensive research attention. There is no consistent result whether tungsten oxide acts as doping and/or coating from the surface modification of the polycrystalline system. Meanwhile, there is no report on the surface modification of the single-crystalline system by tungsten oxide. In this paper, multirole surface modification of single-crystalline nickel-rich ternary cathode material LiNi0.6Co0.2Mn0.2O2 by WO3 is studied by a simple method of adding WO3 followed by calcination. The results show that with the change in the amount of WO3 added, single-crystalline nickel-rich ternary cathode material can be separately doped, separately coated, and both doped and coated. Either doping or coating effectively enhances the structural stability, reduces the polarization of the material, and improves the lithium-ion diffusion kinetics, thus improving the cycle stability and rate performance of the battery. Interestingly, both doping and coating (for SC-NCM622-0.5%WO3) do not show a more excellent synergistic effect, while the single coating (for SC-NCM622-1.0%WO3) after eliminating the rock-salt phase layer performs the most excellent modification effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA