Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Am J Clin Nutr ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38802062

RESUMO

BACKGROUND: The longitudinal association between specific eating behaviors, such as skipping breakfast and night eating, and changes in weight and waist circumference (WC) has been understudied. OBJECTIVE: To investigate whether skipping breakfast and night eating were individually or jointly associated with the annual changes in weight and WC. METHODS: In the current longitudinal study, included were 48,150 Chinese adults (mean age: 50.1 ± 13.9 y) who were free of diabetes, cardiovascular diseases, and cancer in 2014, when data on dietary intake and the presence of night-eating behavior and skipping breakfast were collected via questionnaires. Weight and WC were measured repeatedly in 2014, 2016 and 2018. The associations between night eating and/or skipping breakfast and annual changes in weight and WC were evaluated using the generalized estimating equation models, adjusting for age, gender, total energy, diet quality and other potential confounders. RESULTS: During 4-years of follow-up, among people who had both two unhealthy eating behaviors, the mean difference in annual weight change was 0.53 kg (95% confidence interval[CI]: 0.43 kg, 0.63 kg) and 0.41 cm (95%CI: 0.27 cm, 0.55 cm) in annual WC change, compared with participants without either behaviors. The associations of eating behaviors and change in weight and WC were more pronounced in participants with higher baseline body mass index, relative to their counterparts. Similarly, the associations between these eating behaviors and WC change were stronger in those with poorer diet quality, relative to those with better diet quality. CONCLUSIONS: Individuals with frequent skipping breakfast and/or night eating experienced faster gains in weight and WC, even after adjusting for diet quality and energy intake.

2.
J Appl Toxicol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778435

RESUMO

Beryllium sulfate (BeSO4) can cause inflammation through the mechanism, which has not been elucidated. Mitochondrial DNA (mtDNA) is a key contributor of inflammation. With mitochondrial damage, released mtDNA can bind to specific receptors (e.g., cGAS) and then activate related pathway to promote inflammatory responses. To investigate the mechanism of mtDNA in BeSO4-induced inflammatory response in 16HBE cells, we established the BeSO4-induced 16HBE cell inflammation model and the ethidium bromide (EB)-induced ρ016HBE cell model to detect the mtDNA content, oxidative stress-related markers, mitochondrial membrane potential, the expression of the cGAS-STING pathway, and inflammation-related factors. Our results showed that BeSO4 caused oxidative stress, decline of mitochondrial membrane potential, and the release of mtDNA into the cytoplasm of 16HBE cells. In addition, BeSO4 induced inflammation in 16HBE cells by activating the cGAS-STING pathway. Furthermore, mtDNA deletion inhibited the expression of cGAS-STING pathway, IL-10, TNF-α, and IFN-ß. This study revealed a novel mechanism of BeSO4-induced inflammation in 16HBE cells, which contributes to the understanding of the molecular mechanism of beryllium and its compounds-induced toxicity.

3.
Physiol Mol Biol Plants ; 30(2): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623162

RESUMO

Leguminosae is one of the three largest families of angiosperms after Compositae and Orchidaceae. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the Nicotiana tabacum and Saccharomyces cerevisiae can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades Melilotus officinalis was more closely related to Medicago sativa, and Galega officinalis was more closely related to Galega orientalis. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01421-0.

4.
Genes (Basel) ; 15(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38674393

RESUMO

To date, genomic and transcriptomic data on Coffea arabica L. in public databases are very limited, and there has been no comprehensive integrated investigation conducted on alternative splicing (AS). Previously, we have constructed and sequenced eighteen RNA-seq libraries of C. arabica at different ripening stages of fruit development. From this dataset, a total of 3824, 2445, 2564, 2990, and 3162 DSGs were identified in a comparison of different fruit ripening stages. The largest proportion of DSGs, approximately 65%, were of the skipped exon (SE) type. Biologically, 9 and 29 differentially expressed DSGs in the spliceosome pathway and carbon metabolism pathway, respectively, were identified. These DSGs exhibited significant variations, primarily in S1 vs. S2 and S5 vs. S6, and they involve many aspects of organ development, hormone transduction, and the synthesis of flavor components. Through the examination of research findings regarding the biological functions and biochemical pathways associated with DSGs and DEGs, it was observed that six DSGs significantly enriched in ABC transporters, namely, LOC113712394, LOC113726618, LOC113739972, LOC113725240, LOC113730214, and LOC113707447, were continually down-regulated at the fruit ripening stage. In contrast, a total of four genes, which were LOC113732777, LOC113727880, LOC113690566, and LOC113711936, including those enriched in the cysteine and methionine metabolism, were continually up-regulated. Collectively, our findings may contribute to the exploration of alternative splicing mechanisms for focused investigations of potential genes associated with the ripening of fruits in C. arabica.


Assuntos
Processamento Alternativo , Coffea , Frutas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Transcriptoma/genética , Coffea/genética , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Heliyon ; 10(7): e29347, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617920

RESUMO

Background: Seldom have the associations of preoperative CEA (p-CEA) and recurrent CEA (r-CEA) levels as well as changes in p-CEA and r-CEA with survival in patients with stage I-III colorectal cancer (CRC) who have experienced metastatic relapse, been thoroughly examined. Methods: 241 consecutive patients with stage I-III CRC who experienced metastatic relapse at Fudan University Shanghai Cancer Center (FUSCC) between January 2008 and January 2016 were investigated. The influence of p-CEA, r-CEA and CEA alteration on the overall survival (OS) and relapse-to-death survival (RDS) was evaluated. The restricted cubic spline regression model was employed to explore the optimal cut-off value of CEA. Results: All 241 patients were categorized into four groups built on their CEA alteration patterns as follows: A, patients presenting elevated p-CEA levels but normal r-CEA levels (P-N); B, patients displaying normal levels of both p-CEA and r-CEA (N-N); C, patients exhibiting elevated levels of both p-CEA and r-CEA (P-P); D, patients with normal p-CEA levels but elevated r-CEA levels (N-P). The correlation between p-CEA and OS (P = 0.3266) and RDS (P = 0.2263) was insignificant. However, r-CEA exhibited a significant association with both OS (P = 0.0005) and RDS (P = 0.0002). Group A demonstrated the longest OS and RDS, whereas group D exhibited the poorest OS and RDS outcomes. For both OS and RDS, the CEA alteration groups served as an independent prognostic indicator. The optimal cut-off threshold for CEA was determined to be 5.1 ng/ml via the restricted cubic spline regression model. Conclusion: r-CEA has a stronger correlation with OS and RDS in individuals with stage I-III CRC who have experienced metastatic relapse.The change between p-CEA and r-CEA could further indicate post-relapse survival, thereby facilitating the assessment of mortality risk stratification in stage I-III CRC patients experiencing metastatic relapse.

6.
Int J Surg ; 110(5): 2776-2787, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445460

RESUMO

BACKGROUND: Approximately 60% of patients with colorectal liver metastases (CRLM) experience relapse within 2 years after radical resection, previous studies have proven that repeat local treatment (LT) could prolong survival, however, it is difficult to seize the window for LT due to the lack of a high-sensitive surveillance method. In this study, the authors aim to examine the value of longitudinal circulating tumor DNA (ctDNA) in guiding adjuvant chemotherapy, optimizing clinical surveillance strategy, and thereby improving CRLM outcomes. MATERIALS AND METHODS: The authors conducted a prospective clinical trial using a personalized, tumor-informed ctDNA assay to monitor 60 CRLM patients undergoing resection with curative intent. Formalin-fixed paraffin-embedded tumor samples were collected after surgery. Blood samples were collected before surgery, 30 days after surgery (post-OP), and every third month until relapse or up to 2 years. RESULTS: A total of 394 plasma samples from 60 eligible patients were analyzed, with a median follow-up time of 31.3 months. Landmark analyses revealed that detectable ctDNA at post-OP (HR, 4.8), postadjuvant chemotherapy (HR, 6.0), and end-of-treatment (HR, 5.6) were associated with higher recurrence risk ( P <0.001). Post-OP ctDNA positivity served as the only independent prognostic marker in the multivariant analysis (HR, 5.1; P <0.001). Longitudinal ctDNA analysis identified relapsed patients at both sensitivity and specificity of 100%. Most (75%) patients were found with radiological relapse within 6 months after the first detectable ctDNA with a median lead time of 3.5 months. In relapsed patients, 73.2% had oligometastatic disease and 61% were liver-restricted, of which 72.0% received repeat LTs, and 60.0% achieved a secondary no evidence of disease status. CONCLUSIONS: Longitudinal ctDNA monitoring assists in early prediction of relapse, and thereby improves survival of CRLM patients by increased secondary resection rate and secondary no evidence of disease rate.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Neoplasias Hepáticas , Recidiva Local de Neoplasia , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos Prospectivos , Masculino , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/cirurgia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico , Idoso , Adulto , Hepatectomia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos de Coortes
7.
J Alzheimers Dis ; 98(4): 1319-1328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517790

RESUMO

Background: The literature presents conflicting results regarding the potential protective effect of prevalent cancer on the development of dementia and Alzheimer's disease (AD). Objective: Association between cancer and subsequent risk of dementia and/or AD was reported previously, but survival bias has been of concern. Here, we aimed to calculate the lifetime risk of dementia and AD and evaluate the association of cancer history with these two conditions. Methods: In this retrospective analysis, we included 292,654 participants aged 60+ y during the follow-up and free of dementia at baseline, within the UK Biobank cohort. Lifetime risks of dementia and AD were estimated in individuals with and without cancer history, and different durations of cancer exposure and cancer types. Results: During a median of 12.5 follow-up years, 5,044 new dementia and 2,141 AD cases were reported. Lifetime risks of dementia and AD were lower in cancer survivors compared to those without cancer, and this effect was more pronounced in participants with cancer history exposure≥5 years. Similar relationship was observed in individual cancer types, except for breast cancer. Conclusions: Results suggested an inverse association between cancer history and lifetime risk of dementia and AD, which may be modified by different cancer types and cancer exposure time.


Assuntos
Doença de Alzheimer , Neoplasias , Humanos , Doença de Alzheimer/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Neoplasias/epidemiologia
8.
J Transl Med ; 22(1): 249, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454407

RESUMO

BACKGROUND: Bioactive lipids involved in the progression of various diseases. Nevertheless, there is still a lack of biomarkers and relative regulatory targets. The lipidomic analysis of the samples from platinum-resistant in gastric cancer patients is expected to help us further improve our understanding of it. METHODS: We employed LC-MS based untargeted lipidomic analysis to search for potential candidate biomarkers for platinum resistance in GC patients. Partial least squares discriminant analysis (PLS-DA) and variable importance in projection (VIP) analysis were used to identify differential lipids. The possible molecular mechanisms and targets were obtained by metabolite set enrichment analysis and potential gene network screened. Finally, verified them by immunohistochemical of a tissue microarray. RESULTS: There were 71 differential lipid metabolites identified in GC samples between the chemotherapy-sensitivity group and the chemotherapy resistance group. According to Foldchange (FC) value, VIP value, P values (FC > 2, VIP > 1.5, p < 0.05), a total of 15 potential biomarkers were obtained, including MGDG(43:11)-H, Cer(d18:1/24:0) + HCOO, PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, Cer(d18:1/24:0) + H and PC(35:2) + H. Furthermore, we obtained five potential key targets (PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA), and a metabolite-reaction-enzyme-gene interaction network was built to reveal the biological process of how they could disorder the endogenous lipid profile of platinum resistance in GC patients through the glycerophospholipid metabolism pathway. Finally, we further identified PLA2G4A and ACHE as core targets of the process by correlation analysis and tissue microarray immunohistochemical verification. CONCLUSION: PLA2G4A and ACHE regulated endogenous lipid profile in the platinum resistance in GC patients through the glycerophospholipid metabolism pathway. The screening of lipid biomarkers will facilitate earlier precision medicine interventions for chemotherapy-resistant gastric cancer. The development of therapies targeting PLA2G4A and ACHE could enhance platinum chemotherapy effectiveness.


Assuntos
Neoplasias Gástricas , Humanos , Biomarcadores , Análise Discriminante , Glicerofosfolipídeos , Fosfolipases A2 do Grupo III , Fosfolipases A2 do Grupo IV , Metabolismo dos Lipídeos/genética , Lipídeos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
9.
Ital J Pediatr ; 50(1): 52, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486257

RESUMO

BACKGROUND: Orthostatic intolerance, which includes vasovagal syncope and postural orthostatic tachycardia syndrome, is common in children and adolescents. Elevated plasma homocysteine levels might participate in the pathogenesis of orthostatic intolerance. This study was designed to analyze the plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. METHODS: Plasma samples from 34 orthostatic intolerance children with a plasma homocysteine concentration > 9 µmol/L and 10 healthy children were subjected to ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry analysis. RESULTS: A total of 875 metabolites were identified, 105 of which were significantly differential metabolites. Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, 1-(1Z-octadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, histidine, isocitric acid, and DL-glutamic acid and its downstream metabolites were upregulated, whereas 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-sn-glycerol 3-phosphocholine, sphingomyelin (d18:1/18:0), betaine aldehyde, hydroxyproline, and gamma-aminobutyric acid were downregulated in the orthostatic intolerance group compared with the control group. All these metabolites were related to choline and glutamate. Heatmap analysis demonstrated a common metabolic pattern of higher choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid, and lower sphingomyelin (d18:1/18:0), 1-stearoyl-sn-glycerol 3-phosphocholine, and 1-palmitoyl-sn-glycero-3-phosphocholine in patients with certain notable metabolic changes (the special group) than in the other patients (the common group). The maximum upright heart rate, the change in heart rate from the supine to the upright position, and the rate of change in heart rate from the supine to the upright position of vasovagal syncope patients were significantly higher in the special group than in the common group (P < 0.05). Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid were positively correlated with the rate of change in heart rate from the supine to the upright position in vasovagal syncope patients (P < 0.05). CONCLUSIONS: The levels of choline-related metabolites and glutamate-related metabolites changed significantly in orthostatic intolerance children with high levels of plasma homocysteine, and these changes were associated with the severity of illness. These results provided new light on the pathogenesis of orthostatic intolerance.


Assuntos
Glicerol/análogos & derivados , Intolerância Ortostática , Fosforilcolina/análogos & derivados , Síncope Vasovagal , Adolescente , Criança , Humanos , Ácido Glutâmico , Glicerilfosforilcolina , Esfingomielinas , Colina , Homocisteína
10.
Phytomedicine ; 128: 155360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547624

RESUMO

BACKGROUND: Autophagy could sense metabolic conditions and safeguard cells against nutrient deprivation, ultimately supporting the survival of cancer cells. Nobiletin (NOB) is a kind of bioactive component of the traditional Chinese medicine Citri Reticulatae Pericarpium and has been proven to induce GC cell death by reducing de novo fatty acid synthesis in our previous study. Nevertheless, the precise mechanisms by which NOB induces cell death in GC cells still need further elucidation. OBJECTIVES: To examine the mechanism by which NOB inhibits gastric cancer progression through the regulation of autophagy under the condition of lipid metabolism inhibition. METHODS/ STUDY DESIGN: Proliferation was detected by the CCK-8 assay. RNA sequencing (RNA-seq) was used to examine signaling pathway changes. Electron microscopy and mRFP-GFP-LC3 lentiviral transfection were performed to observe autophagy in vitro. Western blot, plasmid transfection, immunofluorescence staining, and CUT & Tag-qPCR techniques were utilized to explore the mechanisms by which NOB affects GC cells. Molecular docking and molecular dynamics simulations were conducted to predict the binding mode of NOB and SREBP1. CETSA was adopted to verify the predicted of binding model. A patient-derived xenograft (PDX) model was employed to verify the therapeutic efficacy of NOB in vivo. RESULTS: We conducted functional studies and discovered that NOB inhibited the protective effect of autophagy via the PI3K/Akt/mTOR axis in GC cells. Based on previous research, we found that the overexpression of ACLY abrogated the NOB-induced autophagy-dependent cell death. In silico analysis predicted the formation of a stable complex between NOB and SREBP1. In vitro assays confirmed that NOB treatment increased the thermal stability of SREBP1 at the same temperature conditions. Moreover, CUT&TAG-qPCR analysis revealed that NOB could inhibit SREBP1 binding to the ACLY promoter. In the PDX model, NOB suppressed tumor growth, causing SREBP1 nuclear translocation inhibition, PI3K/Akt/mTOR inactivation, and autophagy-dependent cell death. CONCLUSION: NOB demonstrated the ability to directly bind to SREBP1, inhibiting its nuclear translocation and binding to the ACLY promoter, thereby inducing autophagy-dependent cell death via PI3K/Akt/mTOR pathway.


Assuntos
Autofagia , Flavonas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Neoplasias Gástricas , Serina-Treonina Quinases TOR , Humanos , Neoplasias Gástricas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Flavonas/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Autofagia/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C
11.
Biochem Biophys Res Commun ; 704: 149690, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387326

RESUMO

Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteína Forkhead Box O3 , Hepatopatias Alcoólicas , Animais , Camundongos , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Etanol/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína Forkhead Box O3/agonistas
12.
Int J Biol Macromol ; 262(Pt 1): 129970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325689

RESUMO

In humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods. In vivo and in vitro experiments have shown that g25 activated the activity of PDH and reduced plasma lactate and triglyceride level. Besides, g25 significantly decreased hepatic fat deposition in a diet-induced obesity mouse model. Furthermore, g25 enhanced the tumor-inhibiting activity of cisplatin when used in combination. Molecular dynamics simulations and in vitro kinase assay also revealed the specificity of g25 towards PDK2. Overall, these findings emphasize the importance of targeting the PDK/PDH axis to regulate PDH enzyme activity in the treatment of metabolic disorders, providing directions for future related research. This study provides a possible lead compound for the PDK/PDH axis related diseases and offers insights into the regulatory mechanisms of this pathway in diseases.


Assuntos
Doenças Metabólicas , Neoplasias , Animais , Camundongos , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Fosforilação , Doenças Metabólicas/tratamento farmacológico , Obesidade
13.
J Appl Toxicol ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409892

RESUMO

Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common-Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common-Toxicity task but also enhances the stability of the model prediction. It shows that the graph-based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.

14.
BMJ Open ; 14(2): e079442, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309748

RESUMO

INTRODUCTION: The preliminary result of the TORCH trial has shown a promising complete response (CR) for managing locally advanced rectal cancer with neoadjuvant short-course radiotherapy (SCRT) combined with chemotherapy and PD-1 inhibitor. For locally advanced colon cancer (LACC) with bulky nodal disease and/or clinically T4, neoadjuvant chemotherapy followed by colectomy with en bloc removal of regional lymph nodes is the suggested treatment. However, the CR rate is less than 5%. TORCH-C will aim to investigate neoadjuvant SCRT combined with chemotherapy and PD-1 inhibitor in LACC. METHODS AND ANALYSIS: TORCH-C is a randomised, prospective, multicentre, double-arm, open, phase II trial of SCRT combined with chemotherapy and immunotherapy in LACC with microsatellite stable (MSS) patients and cT4 or bulky nodes. Eligible patients will be identified by the multidisciplinary team. 120 patients will be randomised 1:1 to the intervention or control arm. The patients in the control arm will receive four cycles of capecitabine plus oxaliplatin (CAPOX). The patients in the intervention arm will receive SCRT, followed by four cycles of CAPOX and PD-1 inhibitor (serplulimab). Both arms will receive curative surgery, followed by four cycles of CAPOX. The primary endpoint is pathological complete regression.TORCH-C (TORCH-colon) trial aims to investigate whether the combination of immunotherapy and chemoradiotherapy improves the treatment effect in LACC with MSS. TORCH-C will establish the TORCH platform, a key part of our long-term strategy to develop neoadjuvant treatment for colorectal cancer. ETHICS AND DISSEMINATION: This study was approved by the Ethics Committee of Fudan University Shanghai Cancer Center (approval number: 2211265-12). TRIAL REGISTRATION NUMBER: NCT05732493.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Humanos , Capecitabina/uso terapêutico , Oxaliplatina/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Prospectivos , Neoplasias Retais/patologia , China , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Quimiorradioterapia/métodos , Terapia Neoadjuvante/métodos , Estadiamento de Neoplasias , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
15.
J Adv Res ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295877

RESUMO

INTRODUCTION: Dehydrocostus lactone (Dehy), a natural sesquiterpene lactone from Saussurea lappa Clarke, displays remarkable efficacy in treating cancer and gastrointestinal disorders. However, its anti-gastric cancer (GC) effect remains poorly understood. OBJECTIVES: Our study aimed to elucidate the anti-GC effect of Dehy and its putative mechanism. METHODS: The anti-GC effect was assessed with MTT, colony formation, wound healing and transwell invasion assays. Cell apoptosis rate was detected by Annexin V-FITC/PI binding assay. Network pharmacology analysis and XF substrate oxidation stress test explored the underlying mechanism and altered metabolic phenotype. Lipogenic enzyme expressions and neutral lipid pool were measured to evaluate cellular lipid synthesis and storage. Biolayer interferometry and molecular docking investigated the direct target of Dehy. Autophagosomes were observed by transmission electron microscopy and MDC staining, while the autophagic flux was detected by mRFP-GFP-LC3 transfection. The clinical significance of ACLY was confirmed by tissue microarrays. Patient-derived xenograft (PDX) models were adopted to detect the clinical therapeutic potential of Dehy. RESULTS: Dehy prominently suppressed GC progression both in vitro and in vivo. Mechanistically, Dehy down-regulated the lipogenic enzyme ACLY, thereby reducing fatty acid synthesis and lipid reservation. Moreover, IKKß was identified as the direct target of Dehy. Dehy inhibited the phosphorylation of IKKß, promoting the ubiquitination and degradation of ACLY, thereby resulting in lipid depletion. Subsequently, GC cells initiated autophagy to replenish the missing lipids, whereas Dehy impeded this cytoprotective mechanism by down-regulating LAMP1 and LAMP2 expressions, which disrupted lysosomal membrane functions, ultimately leading to apoptosis. Additionally, Dehy exhibited potential in GC clinical therapy as it enhanced the efficacy of 5-Fluorouracil in PDX models. CONCLUSIONS: Our work identified Dehy as a desirable agent for blunting abnormal lipid metabolism and highlighted its inhibitory effect on protective autophagy, suggesting the future development of Dehy as a novel therapeutic drug for GC.

16.
Int J Biol Macromol ; 257(Pt 2): 128768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096931

RESUMO

Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality through reducing the oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows a great potential in assisted reproduction to solve the problem of male infertility.


Assuntos
Proteínas Quinases Ativadas por AMP , Sêmen , Suínos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Metilação , DNA/metabolismo , Motilidade dos Espermatozoides/fisiologia
17.
Cancer Cell Int ; 23(1): 317, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071310

RESUMO

Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Similar to other types of tumors, GC cells undergo metabolic reprogramming and switch to a "predominantly glycolytic" metabolic pattern to promote its survival and metastasis, also known as "the Warburg effect", which is characterized by enhanced glucose uptake and lactate production. A large number of studies have shown that targeting cancer cells to enhanced glycolysis is a promising strategy, that can make cancer cells more susceptible to other conventional treatment methods of treatment, including chemotherapy, radiotherapy and immunotherapy, and so on. Therefore, this review summarizes the metabolic characteristics of glycolysis in GC cells and focuses on how abnormal lactate concentration can lead to immunosuppression through its effects on the differentiation, metabolism, and function of infiltrating immune cells, and how targeting this phenomenon may be a potential strategy to improve the therapeutic efficacy of GC.

18.
Transl Cancer Res ; 12(10): 2911-2922, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969394

RESUMO

Background: As a new form of cell death, ferroptosis has been shown to have inhibitory effects on a variety of tumor cells except oral squamous cell carcinoma (OSCC). There were few investigations on the effects and molecular mechanisms of piperlongumine (PL, a ferroptosis inducer) and CB-839 (a GLS1 inhibitor which promotes ferroptosis) on OSCC cells. This article assesses the anticancer effect and mechanism of PL as well as combined with CB-839. Methods: OSCC cells were treated with specified concentration of PL alone or with ferroptosis inhibitor Ferrostatin-1 (Fer-1) and antioxidant N-Acetylcysteine (NAC) to assess their effects on biological characteristics such as cell proliferation, cell death and intracellular ferroptosis related pathways. Also, cells were treated with PL combined with CB-839 to evaluate the synergistic effect of CB-839 on PL's anticancer effects. Results: The results showed that the proliferation rate of PL-treated OSCC cells were decreased in a dose- and time-dependent manner. PL can induce OSCC cells apoptosis. Lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS) were accumulated after PL treatment. We found some protein changes significantly such as the expression of DMT1 increased, and the expression of FTH1, SLC7A11 and GPX4 decreased. In addition, the anti-proliferation effect of PL can be reversed by Fer-1 and NAC and the level of LPO and ROS was decreased accordingly. Importantly, we found that PL and CB-839 in combination could decrease the cell viability and the LPO level synergistically, accompanied by a large consumption of glutathione (GSH). These evidences prove that PL can induce ferroptosis of OSCC cells, which can be enhanced by CB-839. Conclusions: Our study suggested that the nature product PL can induce the ferroptotic death of OSCC cells, which is further enhanced when combined with CB-839. The synergistic anticancer effect of these two may prove new strategy for OSCC treatment.

19.
Front Immunol ; 14: 1265959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818373

RESUMO

Background: The optimal local treatment for HCC with tumor diameter ≥ 5 cm is not well established. This research evaluated the effectiveness of external beam radiation therapy (EBRT) versus transcatheter arterial chemoembolization (TACE) for HCC with tumor diameter ≥ 5 cm. Methods: A total of 1210 HCC patients were enrolled in this study, including 302 and 908 patients that received EBRT and TACE, respectively. Propensity score matching (PSM) was used to identify patient pairs with similar baseline characteristics. Overall survival (OS) was the primary study endpoint. Results: We identified 428 patients using 1:1 PSM for survival comparison. Compared with the TACE group, the EBRT group had a significantly longer median OS (mOS) before (14.9 vs. 12.3 months, p = 0.0085) and after (16.8 vs. 11.4 months, p = 0.0026) matching. In the subgroup analysis, compared with the TACE group, the EBRT group had a significantly longer mOS for HCC with tumor diameters of 5-7 cm (34.1 vs. 14.3 months, p = 0.04) and 7-10 cm (34.4 vs. 10 months, p = 0.00065), whereas for HCC with tumor diameters ≥ 10 cm, no significant difference in mOS was observed (11.2 vs. 11.2 months, p = 0.83). In addition, the multivariable Cox analysis showed that Child-A, alkaline phosphatase < 125 U/L, and EBRT were independent prognostic indicators for longer survival. Conclusion: EBRT is more effective than TACE as the primary local treatment for HCC with tumor diameter ≥ 5 cm, especially for HCC with tumor diameter of 5-10 cm.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Terapia Combinada , Estudos Retrospectivos
20.
Discov Oncol ; 14(1): 168, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702857

RESUMO

Colorectal cancer represents a significant health threat, yet a standardized method for early clinical assessment and prognosis remains elusive. This study sought to address this gap by using the Seurat package to analyze a single-cell sequencing dataset (GSE178318) of colorectal cancer, thereby identifying distinctive marker genes characterizing various cell subpopulations. Through CIBERSORT analysis of colorectal cancer data within The Cancer Genome Atlas (TCGA) database, significant differences existed in both cell subpopulations and prognostic values. Employing WGCNA, we pinpointed modules exhibiting strong correlations with these subpopulations, subsequently utilizing the survival package coxph to isolate genes within these modules. Further stratification of TCGA dataset based on these selected genes brought to light notable variations between subtypes. The prognostic relevance of these differentially expressed genes was rigorously assessed through survival analysis, with LASSO regression employed for modeling prognostic factors. Our resulting model, anchored by a 10-gene signature originating from these differentially expressed genes and LASSO regression, proved adept at accurately predicting clinical prognoses, even when tested against external datasets. Specifically, natural killer cells from the C7 subpopulation were found to bear significant associations with colorectal cancer survival and prognosis, as observed within the TCGA database. These findings underscore the promise of an integrated 10-gene signature prognostic risk assessment model, harmonizing single-cell sequencing insights with TCGA data, for effectively estimating the risk associated with colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA