Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 7745-7758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144514

RESUMO

Introduction: The incidence and mortality rates of sepsis-induced acute kidney injury (SAKI) remain high, posing a substantial healthcare burden. Studies have implicated a connection between the development of SAKI and inflammation response, apoptosis, and autophagy. Moreover, evidence suggests that manipulating autophagy could potentially influence the prognosis of this condition. Notably, exosomes derived from bone mesenchymal stem cells (BMSCs-Exo) have exhibited promise in mitigating cellular damage by modulating pathways associated with inflammation, apoptosis, and autophagy. Thus, this study aims to investigate the influence of BMSCs-Exo on SAKI and the potential mechanisms that drive this impact. Methods: The SAKI model was induced in HK-2 cells using lipopolysaccharide (LPS), while rats underwent cecal ligation and puncture (CLP) to simulate the condition. Cell viability was assessed using the CCK-8 kit, and kidney damage was evaluated through HE staining, blood urea nitrogen (BUN), and serum creatinine (SCr) measurements. Inflammatory-related RNAs and proteins were quantified via qPCR and ELISA, respectively. Apoptosis was determined through apoptosis-related protein levels, flow cytometry, and TUNEL staining. Western blot analysis was utilized to measure associated protein expressions. Results: In vivo, BMSCs-Exo ameliorated kidney injury in CLP-induced SAKI rats, reducing inflammatory cytokine production and apoptosis levels. Fluorescence microscope observed the absorption of BMSCs-Exo by renal cells following injection via tail vein. In the SAKI rat kidney tissue, there was an upregulation of LC3-II/LC3-I, p62, and phosphorylated AMP-activated protein kinase (p-AMPK) expressions, indicating blocked autophagic flux, while phosphorylated mammalian target of rapamycin (p-mTOR) expression was downregulated. However, BMSCs-Exo enhanced LC3-II/LC3-I and p-AMPK expression, concurrently reducing p62 and p-mTOR levels. In vitro, BMSCs-Exo enhanced cell viability in LPS-treated HK-2 cells, and exerted anti-inflammation and anti-apoptosis effects which were consistent with the results in vivo. Similarly, rapamycin (Rapa) exhibited a protective effect comparable to BMSCs-Exo, albeit partially abrogated by 3-methyladenine (3-MA). Conclusion: BMSCs-Exo mitigate inflammation and apoptosis through autophagy in SAKI, offering a promising avenue for SAKI treatment.


Assuntos
Injúria Renal Aguda , Exossomos , Células-Tronco Mesenquimais , Sepse , Ratos , Animais , Exossomos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Apoptose , Sepse/complicações , Sepse/terapia , Sepse/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos
2.
BMC Mol Cell Biol ; 24(1): 2, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658496

RESUMO

Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility group box protein 1 (HMGB1) is associated with both pyroptosis and autophagy. lipopolysaccharide (LPS) is an important pathogenic factor involved in sepsis. Lentivirus-mediated HMGB1 shRNA was used to inhibit the expression of HMGB1. Macrophages were treated with acetylation inhibitor (AA) to suppress the translocation of HMGB1 from the nucleus to the cytosol. Autophagy and pyroptosis-related protein expressions were detected by Western blot. The levels of caspase-1 activity were detected and the rate of pyroptotic cells was detected by flow cytometry. LPS induced autophagy and pyroptosis of macrophages at different stages, and HMGB1 downregulation decreased LPS-induced autophagy and pyroptosis. Treatment with acetylation inhibitor (anacardic acid) significantly suppressed LPS-induced autophagy, an effect that was not reversed by exogenous HMGB1, suggesting that cytoplasmic HMGB1 mediates LPS-induced autophagy of macrophages. Anacardic acid or an anti-HMGB1 antibody inhibited LPS-induced pyroptosis of macrophages. HMGB1 alone induced pyroptosis of macrophages and this effect was inhibited by anti-HMGB1 antibody, suggesting that extracellular HMGB1 induces macrophage pyroptosis and mediates LPS-induced pyroptosis. In summary, HMGB1 plays different roles in mediating LPS-induced autophagy and triggering pyroptosis according to subcellular localization.


Assuntos
Proteína HMGB1 , Macrófagos , Sepse , Autofagia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Piroptose , Sepse/metabolismo , Animais
3.
Cell Death Dis ; 12(7): 685, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238924

RESUMO

Acute lung injury induced by ischemia-reperfusion (I/R)-associated pulmonary inflammation is associated with high rates of morbidity. Despite advances in the clinical management of lung disease, molecular therapeutic options for I/R-associated lung injury are limited. Zinc finger protein 36 (ZFP36) is an AU-rich element-binding protein that is known to suppress the inflammatory response. A ZFP36 binding site occurs in the 3' UTR of the cAMP-response element-binding protein (CREB) binding protein (CREBBP) gene, which is known to interact with apoptotic proteins to promote apoptosis. In this study, we investigate the involvement of ZFP36 and CREBBP on I/R-induced lung injury in vivo and in vitro. Intestinal ischemia/reperfusion (I/R) activates inflammatory responses, resulting in injury to different organs including the lung. Lung tissues from ZFP36-knockdown mice and mouse lung epithelial (MLE)-2 cells were subjected to either Intestinal I/R or hypoxia/reperfusion, respectively, and then analyzed by Western blotting, immunohistochemistry, and real-time PCR. Silico analyses, pull down and RIP assays were used to analyze the relationship between ZFP36 and CREBBP. ZFP36 deficiency upregulated CREBBP, enhanced I/R-induced lung injury, apoptosis, and inflammation, and increased I/R-induced lung fibrosis. In silico analyses indicated that ZFP36 was a strong negative regulator of CREBBP mRNA stability. Results of pull down and RIP assays confirmed that ZFP36 direct interacted with CREBBP mRNA. Our results indicated that ZFP36 can mediate the level of inflammation-associated lung damage following I/R via interactions with the CREBBP/p53/p21/Bax pathway. The downregulation of ZFP36 increased the level of fibrosis.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Proteína de Ligação a CREB/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Intestinos/irrigação sanguínea , Pulmão/metabolismo , Fibrose Pulmonar/prevenção & controle , Traumatismo por Reperfusão/complicações , Tristetraprolina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Proteína de Ligação a CREB/genética , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais , Tristetraprolina/genética
4.
Cell Death Dis ; 12(6): 614, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131106

RESUMO

Among several leading cardiovascular disorders, ischemia-reperfusion (I/R) injury causes severe manifestations including acute heart failure and systemic dysfunction. Recently, there has been increasing evidence suggesting that alterations in mitochondrial morphology and dysfunction also play an important role in the prognosis of cardiac disorders. Long non-coding RNAs (lncRNAs) form major regulatory networks altering gene transcription and translation. While the role of lncRNAs has been extensively studied in cancer and tumor biology, their implications on mitochondrial morphology and functions remain to be elucidated. In this study, the functional roles of Zinc finger protein 36-like 2 (ZFP36L2) and lncRNA PVT1 were determined in cardiomyocytes under hypoxia/reoxygenation (H/R) injury in vitro and myocardial I/R injury in vivo. Western blot and qRT-PCR analysis were used to assess the levels of ZFP36L2, mitochondrial fission and fusion markers in the myocardial tissues and cardiomyocytes. Cardiac function was determined by immunohistochemistry, H&E staining, and echocardiogram. Ultrastructural analysis of mitochondrial fission was performed using transmission electron microscopy. The mechanistic model consisting of PVT1 with ZFP36L2 and microRNA miR-21-5p with E3 ubiquitin ligase MARCH5 was assessed by subcellular fraction, RNA pull down, FISH, and luciferase reporter assays. These results identified a novel regulatory axis involving PVT1, miR-21-5p, and MARCH5 that alters mitochondrial morphology and function during myocardial I/R injury. Using an in vivo I/R injury mouse model and in vitro cardiomyocytes H/R model, we demonstrated that ZFP36L2 directly associates with PVT1 and alters mitochondrial fission and fusion. PVT1 also interactes with miR-21-5p and suppresses its expression and activity. Furthermore, we identified MARCH5 as a modifier of miR-21-5p, and its effect on mitochondrial fission and fusion are directly proportional to PVT1 expression during H/R injury. Our findings show that manipulation of PVT1-miR-21-5p-MARCH5-mediated mitochondrial fission and fusion via ZFP36L2 may be a novel therapeutic approach to regulate myocardial I/R injury.


Assuntos
Dinâmica Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/genética , RNA Longo não Codificante/fisiologia , Tristetraprolina/fisiologia , Animais , Células Cultivadas , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
5.
Biochem Cell Biol ; 99(2): 214-222, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32813978

RESUMO

In our study, we explored the effect of astragaloside IV (AgIV) on carboplatin chemotherapy in prostate cancer cell lines in vitro and in vivo. Cell viability assay, colony formation assay, flow cytometry, Western blot, immunohistochemistry, immunofluorescence, and tumor xenograft growth assay were conducted. We found that AgIV significantly decreased the half-maximal inhibitory concentration of carboplatin in prostate cancer cell lines LNCap and PC-3. Moreover, AgIV enhanced the effect of carboplatin in suppressing colony formation and inducing cell apoptosis. A low-dose carboplatin treatment upregulated N-cadherin and Vimentin expression and downregulated E-cadherin expression, but this effect was abolished by combining with AgIV. Carboplatin treatment increased the levels of p-AKT and p-p65 and decreased p-IκBα, but AgIV treatment suppressed this. In addition, AgIV synergized with carboplatin to suppress tumor xenograft growth of PC-3 cells, and decreased pAKT and p-p65 levels in vivo. Our results suggested that AgIV enhanced carboplatin sensitivity in prostate cancer cell lines by suppressing AKT/NF-κB signaling, thus suppressed epithelial-mesenchymal transition induced by carboplatin. Our findings provided a new mechanism for AgIV in overcoming drug resistance of platinum-based chemotherapy and suggested a potential combination therapy of AgIV and carboplatin in prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
6.
Ann Palliat Med ; 9(3): 774-787, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32389014

RESUMO

BACKGROUND: Vascular occlusion during hepatectomy accompanies ischemia-reperfusion (IR) injury, which can cause liver dysfunction and affect patients' outcome. Ulinastatin or urinary trypsin inhibitor (UTI), a polyvalent inhibitor of various enzymes, has been confirmed of anti-IR injury effect in recent studies. Here we performed a systematic review and meta-analysis to assess the benefits of perioperation UTI using to protect liver function in hepatectomy. METHODS: Randomized controlled trials (RCTs) evaluating UTI in hepatectomy were identified. Two independent reviewers extracted data on basic characteristics and risk of bias in the studies, and on outcomes such as alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin (TBIL) from 1 to 7 days after operation. RESULTS: A total of 9 RCTs including 408 UTI and 372 control participants were identified. There was no significant difference in basic characteristics such as age or sex. The majority of the patients who underwent hepatectomy had primary liver carcinoma, liver metastases and benign liver lesions. A significant improvement in liver function was associated with UTI use not only at 1 and 3 days postoperatively, but also at 7 days (all P≤0.01). However, significant heterogeneity existed between the pooled studies (all P<0.01). CONCLUSIONS: UTI has positive protective effects against IR injury in hepatectomy. However, further highquality RCTs are needed to confirm this conclusion.


Assuntos
Glicoproteínas , Hepatectomia , Fígado , Inibidores da Tripsina , Glicoproteínas/uso terapêutico , Humanos , Fígado/efeitos dos fármacos , Fígado/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores da Tripsina/uso terapêutico
7.
Age Ageing ; 49(1): 88-95, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711096

RESUMO

BACKGROUND: post-operative delirium (POD) is a common complication in older patients, though a possible link between metabolic changes and POD development has yet to be investigated. METHODS: older patients with hip fracture who underwent hemi-arthroplasty were recruited, and delirious states were assessed for 3 days after surgery using the confusion assessment method-Chinese revision. Simultaneously, fasting blood samples were collected on the morning of surgery and on the first post-operative day. Ultimately, 244 older patients who met the inclusion and exclusion criteria were assessed. Blood samples from 60 patients with POD and 60 matched controls were analysed using metabolomics platforms. RESULTS: sixty patients (24.6%) developed POD. Principal component analysis scores plot and cross-validated scores plots from orthogonal partial least squares-discriminant analysis were implemented to visualise the differences in metabolites between the two groups before and after surgery (P < 0.05). Our data indicate that levels of ω3 and ω6 fatty acids were lower in the POD group than in the NPOD (non-POD) group both before and after surgery; tricarboxylic cycle intermediate levels were lower in the POD group than in the NPOD group, but glycolysis products were higher in the POD group than in the NPOD group after surgery. Furthermore, the branched-chain amino acid (BCAA)/aromatic amino acid ratio was lower in the POD group than in the NPOD group after surgery. CONCLUSIONS: metabolic abnormalities, including deficiencies in ω3 and ω6 fatty acids, perturbations in tricarboxylic cycle and oxidative stress and metabolic imbalances in BCAA and AAA might contribute to POD development.


Assuntos
Artroplastia de Quadril/efeitos adversos , Delírio/etiologia , Hemiartroplastia/efeitos adversos , Complicações Cognitivas Pós-Operatórias/etiologia , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Ciclo do Ácido Cítrico , Delírio/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Estresse Oxidativo , Complicações Cognitivas Pós-Operatórias/metabolismo , Análise de Componente Principal
8.
Lab Invest ; 99(12): 1770-1783, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31278346

RESUMO

Early pulmonary fibrosis is the leading cause of poor prognosis in patients with acute respiratory distress syndrome (ARDS). However, whether the renin-angiotensin system (RAS) can serve as a therapeutic target is unknown. In this study, an animal model of early pulmonary fibrosis was established via the LPS three-hit regimen. Afterwards, the animals were treated with intraperitoneal injections of Ang-(1-7), AVE0991, or A779 once per day for 20 days. The plasma and BALF AngII levels of the animals were increased, while there were no significant changes in Ang-(1-7) levels in lung tissue after LPS treatment. Furthermore, the AT1R protein levels were significantly increased and the Mas levels were significantly decreased on days 14 and 21. Administration of Ang-(1-7) downregulated LPS-induced AT1R mRNA expression, which was upregulated by A779. The expression of Mas mRNA responded in the opposite direction relative to AT1R. Moreover, LPS caused decreased levels of Mas and E-cadherin and increased AT1R, Vimentin, and Src phosphorylation levels. Ang-(1-7) or AVE0991 blocked these effects but was counteracted by A779 treatment. Our findings suggested that AngII and AT1R levels exhibit opposite dynamic trends during LPS-induced early pulmonary fibrosis, as do Ang-(1-7) and Mas. Ang-(1-7) exerts protective effects against early pulmonary fibrosis, mainly by regulating the balance between AngII and AT1R and between Ang-(1-7) and Mas and by inhibiting Src kinase activation.


Assuntos
Angiotensina II/análogos & derivados , Angiotensina I/uso terapêutico , Imidazóis/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Vasodilatadores/uso terapêutico , Angiotensina I/sangue , Angiotensina II/sangue , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Animais , Líquido da Lavagem Broncoalveolar/química , Caderinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Imidazóis/farmacologia , Lipopolissacarídeos , Pulmão/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/sangue , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta/sangue , Vimentina/metabolismo
9.
J Gerontol A Biol Sci Med Sci ; 72(12): 1689-1696, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28180239

RESUMO

BACKGROUND: Hypotheses on the development of postoperative delirium (PD) include "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," and "neuroendocrine." Here, we employed metabolomics to determine the serum metabolites in the baseline associated with an increased risk of PD. METHODS: Two hundred and nine elderly hip-fracture patients who had undergone hemiarthroplasty and had completed our assessments were selected. Fasting venous blood was collected at 7:00 on the morning of surgery and a serum sample bank was created for analysis. On the first 3 postoperative days, the patients were assessed twice daily using the Confusion Assessment Method - Chinese Revision. Ultimately, 43 patients were diagnosed with PD, who comprised the PD group. Meanwhile, 43 matched non-PD patients were selected based on age, sex, and body mass index. Serum samples from the two groups were analyzed by gas chromatography-time-of-flight mass spectrometry and Acquity ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. RESULTS: The demographic characteristics of the groups were matched. Four metabolites associated with an increased risk of PD were identified, including S-methylcysteine, linolenic acid, eicosapentaenoic acid, and linoleic acid. CONCLUSIONS: Multiple metabolic pathways in the PD group altered before surgery, including deficiency of ω3 and ω6 fatty acids, energy metabolism and oxidative stress with interactions between hypoxia and mitochondrial dysfunction, in addition to glutamate-glutamine cycle dysfunction. These metabolic abnormalities could possibly increase the fragility of the brain and then contribute to PD.


Assuntos
Delírio/epidemiologia , Fraturas do Quadril/sangue , Fraturas do Quadril/cirurgia , Metabolômica , Complicações Pós-Operatórias/epidemiologia , Idoso , Feminino , Humanos , Masculino , Período Pré-Operatório
10.
Sci Rep ; 6: 27911, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302421

RESUMO

Acute respiratory distress syndrome (ARDS) caused by severe sepsis remains a major challenge in intensive care medicine. ACE2 has been shown to protect against lung injury. However, the mechanisms of its protective effects on ARDS are largely unknown. Here, we report that ACE2 prevents LPS-induced ARDS by inhibiting MAPKs and NF-κB signaling pathway. Lentiviral packaged Ace2 cDNA or Ace2 shRNA was intratracheally administrated into the lungs of male SD rats. Two weeks after gene transfer, animals received LPS (7.5 mg/Kg) injection alone or in combination with Mas receptor antagonist A779 (10 µg/Kg) or ACE2 inhibitor MLN-4760 (1 mg/Kg) pretreatment. LPS-induced lung injury and inflammatory response were significantly prevented by ACE2 overexpression and deteriorated by Ace2 shRNA. A779 or MLN-4760 pretreatment abolished the protective effects of ACE2. Moreover, overexpression of ACE2 significantly reduced the Ang II/Ang-(1-7) ratio in BALF and up-regulated Mas mRNA expression in lung, which was reversed by A779. Importantly, the blockade of ACE2 on LPS-induced phosphorylation of ERK1/2, p38 and p50/p65 was also abolished by A779. Whereas, only the ERK1/2 inhibitor significantly attenuated lung injury in ACE2 overexpressing rats pretreated with A779. Our observation suggests that AEC2 attenuates LPS-induced ARDS via the Ang-(1-7)/Mas pathway by inhibiting ERK/NF-κB activation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Peptidil Dipeptidase A/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Imidazóis/farmacologia , Lentivirus/genética , Leucina/análogos & derivados , Leucina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Peptidil Dipeptidase A/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
11.
Medicine (Baltimore) ; 95(8): e2866, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26937919

RESUMO

The purpose of this study is to explore the risk factors affecting the postoperative transfusion of allogeneic blood in patients undergoing orthopedics surgery with intraoperative blood salvage (IBS). A retrospective study of 279 patients undergoing orthopedic surgeries with IBS from May 2013 to May 2015 was enrolled. The binary logistic regression was used to find out the risk factors associated with postoperative transfusion of allogeneic blood in orthopedics patients with IBS, and then receiver operating characteristic (ROC) curve was drawn to determine the optimal threshold of the regression model.Single factor analysis showed that age, American Society of Anesthesiologists (ASA) grade, preoperative hemoglobin, operation time, received autologous blood, the laying time of autologous blood, bleeding volume, and postoperative drainage volume had significant effects on postoperative allogeneic blood transfusion.In binary logistic regression analysis, the independent factors predicting orthopedic patients with IBS need to transfuse allogeneic blood after surgeries were age (odds ratio [OR] = 0.415, P = 0.006), ASA grade (OR = 2.393, P = 0.035), preoperative hemoglobin (OR = 0.532, P = 0.022), and postoperative drainage volume (OR = 4.279, P = 0.000). The area under ROC curve was 0.79 and the predicted accuracy rate of the model was 81.58%.After operation, the orthopedic patients with IBS still have a high allogeneic blood transfusion rate, and IBS is not a perfect blood protection method. The logistic regression model of our study provides a reliable prediction for postoperative transfusion of allogeneic blood in orthopedic patients with IBS, which have a certain reference value.


Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Transfusão de Sangue/estatística & dados numéricos , Recuperação de Sangue Operatório , Procedimentos Ortopédicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
12.
Apoptosis ; 21(1): 69-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456506

RESUMO

Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.


Assuntos
Apoptose/genética , Células Endoteliais/metabolismo , Hipertensão/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Elementos de Resposta , Animais , Caspase 3/genética , Caspase 3/metabolismo , Hipóxia Celular , Células Endoteliais/patologia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Lentivirus/genética , Lentivirus/metabolismo , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Monocrotalina , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transdução Genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Shock ; 43(4): 395-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25768373

RESUMO

Activation of the renin-angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin II [Ang II] and angiotensin-converting enzyme 2 [ACE2]/Ang-1-7) has been implicated in the pathophysiology of inflammatory response and acute lung injury (ALI). Previous studies have shown that the ACE inhibitor captopril (Cap) may be a potent therapeutic drug for ALI. However, the mechanisms of its protective effects on ALI are still largely unknown. In this study, we evaluated the effects of Cap on preventing lipopolysaccharide (LPS)-induced lung injury and further investigated the underlying mechanisms of these protective effects. Rats were intraperitoneally pretreated with Cap (50 mg/kg) 30 min prior to an intravenous administration of LPS (7.5 mg/kg). Furthermore, following a 30-min pretreatment with Cap (10 mol/mL) or combined with the ACE2 inhibitor MLN4760 (10 mol/mL), rat pulmonary microvascular endothelial cells (PMVECs) were stimulated with LPS (1 mg/mL). Captopril pretreatment significantly attenuated LPS-induced pathophysiological changes in the lung, inhibited secretion of tumor necrosis factor α and interleukin 6, reduced the ratio of Ang II to Ang-1-7, and reversed the increased ratio of ACE to ACE2, which was remarkably decreased from 7.07 (LPS only) to 1.71 (LPS + Cap). The protective effects of Cap on ALI were also confirmed by in vitro studies, in which Cap suppressed LPS-induced secretion of proinflammatory cytokines and modulated the expression levels of ACE and ACE2. After Cap pretreatment, the ratio of ACE to ACE2 expression was remarkably decreased from 5.18 (LPS alone) to 1.52 (LPS + Cap). Furthermore, Cap given before LPS administration led to inhibition of p38 mitogen-activated protein kinase (MAPK), ERK (extracellular signal-regulated kinase) 1/2, and JNK (c-Jun N-terminal kinase) phosphorylation in PMVECs, whereas MLN4760 abolished the protective effects of Cap on LPS-induced secretion of proinflammatory cytokines and abolished Cap-induced blockade of p38MAPK, ERK1/2, and JNK phosphorylation. Our findings reveal that Cap exerts protective effects on LPS-induced lung injury and the cytotoxicity of PMVECs, and these effects may, at least in part, regulate the balance of ACE and ACE2 expression and inhibit the activation of MAPKs.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Lipopolissacarídeos/química , Lesão Pulmonar/terapia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Captopril/química , Sobrevivência Celular , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Imidazóis/química , Interleucina-6/metabolismo , Leucina/análogos & derivados , Leucina/química , Lesão Pulmonar/induzido quimicamente , Sistema de Sinalização das MAP Quinases , Masculino , Microcirculação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina , Fator de Necrose Tumoral alfa/metabolismo
14.
Sci Rep ; 5: 8209, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644821

RESUMO

ACE2 and Ang-(1-7) have important roles in preventing acute lung injury. However, it is not clear whether upregulation of the ACE2/Ang-(1-7)/Mas axis prevents LPS-induced injury in pulmonary microvascular endothelial cells (PMVECs) by inhibiting the MAPKs/NF-κB pathways. Primary cultured rat PMVECs were transduced with lentiviral-borne Ace2 or shRNA-Ace2, and then treated or not with Mas receptor blocker (A779) before exposure to LPS. LPS stimulation resulted in the higher levels of AngII, Ang-(1-7), cytokine secretion, and apoptosis rates, and the lower ACE2/ACE ratio. Ace2 reversed the ACE2/ACE imbalance and increased Ang-(1-7) levels, thus reducing LPS-induced apoptosis and inflammation, while inhibition of Ace2 reversed all these effects. A779 abolished these protective effects of Ace2. LPS treatment was associated with activation of the ERK, p38, JNK, and NF-κB pathways, which were aggravated by A779. Pretreatment with A779 prevented the Ace2-induced blockade of p38, JNK, and NF-κB phosphorylation. However, only JNK inhibitor markedly reduced apoptosis and cytokine secretion in PMVECs with Ace2 deletion and A779 pretreatment. These results suggest that the ACE2/Ang-(1-7)/Mas axis has a crucial role in preventing LPS-induced apoptosis and inflammation of PMVECs, by inhibiting the JNK/NF-κB pathways.


Assuntos
Angiotensina I/metabolismo , Células Endoteliais/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/citologia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microvasos/citologia , NF-kappa B/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 15(6): 10185-98, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24914766

RESUMO

Angiogenic proliferation of vascular endothelial cells is believed to play an important role in pulmonary vascular remodeling in pulmonary arterial hypertension. In the present study, we found that c-GMP (cyclic guanosine monophosphate) inhibited the proliferation and tube formation of pulmonary vascular endothelial cells induced by TGF-ß1, and that this process was reversed by PKG (protein kinase G) inhibitor and PKC (protein kinase C) inhibitor. In addition, small interfering RNA (siRNA) targeting ERK also reduced cellular proliferation. Furthermore, western blotting showed that cGMP down-regulated the phosphorylation level of ERK1/2, which was reversed not only by PKG inhibitor but also by PKC inhibitor. Silencing different PKC isoforms showed that PKCΔ, PKCγ and PKCα were involved in ERK phosphorylation, suggesting that PKC kinases have a permissive action. Three subtypes, PKCΔ, PKCγ and PKCα are likely to be involved the phosphorylation suppression of ERK included cGMP. Taken together, these data suggest that ERK phosphorylation mediates the proliferation of pulmonary vascular endothelial cells, and PKC kinases have a permissive action in this process.


Assuntos
GMP Cíclico/metabolismo , Células Endoteliais/citologia , Pulmão/irrigação sanguínea , Neovascularização Fisiológica , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/genética , RNA Interferente Pequeno/genética , Ratos , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA