Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2724: 127-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37987903

RESUMO

Infection by positive-strand RNA viruses induces extensive remodeling of the host endomembrane system in favor of viral replication and movement. The integral membrane protein 6K2 of potyviruses induces the formation of membranous virus replication vesicles at the endoplasmic reticulum exit site (ERES). The intracellular trafficking of 6K2-induced vesicles along with microfilaments requires the vesicular transport pathway, actomyosin motility system, and possibly post-Golgi compartments such as endosomes as well. Recent studies have shown that endocytosis is essential for the intracellular movement of potyviruses from the site of viral genome replication/assembly site to plasmodesmata (PD) to enter neighboring cells. In this chapter, we describe a detailed protocol of how to use endomembrane trafficking pathway-specific chemical inhibitors and organelle-selective fluorescence dye to study the trafficking of potyviral proteins and potyvirus-induced vesicles and to unravel the role of endocytosis and the endocytic pathway in potyvirus infection in Nicotiana benthamiana plants.


Assuntos
Potyvirus , Viroses , Fluorescência , Retículo Endoplasmático , Complexo de Golgi , Nicotiana , Corantes Fluorescentes
2.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696454

RESUMO

Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.


Assuntos
Ilarvirus/genética , Ilarvirus/isolamento & purificação , Doenças das Plantas/virologia , Prunus avium/virologia , Sequência de Bases , DNA Complementar , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Ontário , Prunus , RNA Viral
3.
Methods Mol Biol ; 2172: 155-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557368

RESUMO

Virus-induced gene silencing (VIGS) is a gene silencing mechanism by which an invading virus targets and silences the endogenous genes that have significant sequence similarity with the virus. It opens the door for us to develop viruses as powerful viral vectors and modify them for molecular characterization of gene functions in plants. In the past two decades, VIGS has been studied extensively in plants, and various VIGS vectors have been developed. Despite the fact that VIGS is in particular practical for functional genomic study of perennial woody vines and trees with a long life cycle and recalcitrant to genetic transformation, not many studies have been reported in this area. Here, we describe a protocol for the use of a Prunus necrotic ringspot virus (PNRSV)-based VIGS vector we have recently developed for functional genomic studies in Prunus fruit trees.


Assuntos
Ilarvirus/patogenicidade , Prunus/genética , Prunus/virologia , Inativação Gênica/fisiologia , Ilarvirus/genética , Doenças das Plantas/virologia , Interferência de RNA/fisiologia
4.
Plant J ; 101(2): 384-400, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562664

RESUMO

Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2ß) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2ß impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2ß are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Dinaminas/metabolismo , Vírus de Plantas/metabolismo , Vírus de RNA/metabolismo , Proteínas Virais/metabolismo , Proteínas de Arabidopsis/genética , Dinaminas/genética , Endocitose , Endossomos , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Potyvirus , Domínios e Motivos de Interação entre Proteínas , Vírus de RNA/patogenicidade , Nicotiana/genética , Replicação Viral/fisiologia
5.
Nat Commun ; 9(1): 1268, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593293

RESUMO

Autophagy emerges as an essential immunity defense against intracellular pathogens. Here we report that turnip mosaic virus (TuMV) infection activates autophagy in plants and that Beclin1 (ATG6), a core component of autophagy, inhibits virus replication. Beclin1 interacts with NIb, the RNA-dependent RNA polymerase (RdRp) of TuMV, via the highly conserved GDD motif and the interaction complex is targeted for autophagic degradation likely through the adaptor protein ATG8a. Beclin1-mediated NIb degradation is inhibited by autophagy inhibitors. Deficiency of Beclin1 or ATG8a enhances NIb accumulation and promotes viral infection and vice versa. These data suggest that Beclin1 may be a selective autophagy receptor. Overexpression of a Beclin1 truncation mutant that binds to NIb but lacks the ability to mediate NIb degradation also inhibits virus replication. The Beclin1-RdRp interaction further extends to several RNA viruses. Thus Beclin1 restricts viral infection through suppression and also likely autophagic degradation of the viral RdRp.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Doenças das Plantas/virologia , Potyvirus/patogenicidade , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , Mutação , Proteínas de Plantas/metabolismo , Plasmídeos/metabolismo , Potyvirus/fisiologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Nicotiana/metabolismo , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Replicação Viral/genética
6.
Plant J ; 92(5): 846-861, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941316

RESUMO

Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD-enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2-fold increase) and 48 (≥2-fold reduction) are significantly differentially accumulated in the PD-enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α-expansin designated NbEXPA1, a cell wall loosening protein, is PD-specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA-dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD-proteome dataset that is useful in future studies to expound PD biology and PD-mediated virus-host interactions but also characterizes NbEXPA1 as the first PD-specific cell wall loosening protein and its essential role in potyviral infection.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Potyvirus/metabolismo , Potyvirus/fisiologia , Proteômica , Nicotiana/metabolismo , Replicação Viral
7.
Arch Virol ; 161(6): 1657-63, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26984225

RESUMO

In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.


Assuntos
Fragaria/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Canadá , Europa (Continente) , Variação Genética , Genoma Viral , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Recombinação Genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-21097056

RESUMO

Regulation of proliferation is required for normal development of tissues and prevention of cancer formation. Continuous control of proliferation leads to regular shaped cells forming characteristic tissue patterns. Epithelial tissues serve as a model system for studying tissue morphogenesis. Several groups have studied epithelial morphogenesis using topological or geometric models, with various assumptions. In this study, we have developed a method to simulate the dynamic process of proliferating epithelia using an off-lattice cellular model. Our method realistically models the shape, size, geometry, lineage, cleavage plane orientation as well as topological properties of individual cells. We find that cellular rearrangements and cleavage plane orientation are critical in the formation of the observed cellular pattern of epithelia, including a high percentage of hexagons in proliferating epithelial cells. It is likely that the rearrangements and orientation of the cleavage plane reduces the overall stress on the cell. We show that a high percentage of hexagons in proliferating epithelia can be obtained using uniform growth rates, which was considered unlikely in previous studies. Our off-lattice cellular model provides an improvement over existing topological for studying the dynamics of proliferating epithelium.


Assuntos
Proliferação de Células , Células Epiteliais/citologia , Algoritmos , Humanos , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA