Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1382029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817443

RESUMO

Infections of hepatotropic viruses cause a wide array of liver diseases including acute hepatitis, chronic hepatitis and the consequently developed cirrhosis and hepatocellular carcinoma (HCC). Among the five classical hepatotropic viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV) usually infect human persistently and cause chronic hepatitis, leading to major troubles to humanity. Previous studies have revealed that several types of inflammasomes are involved in the infections of HBV and HCV. Here, we summarize the current knowledge about their roles in hepatitis B and C. NLRP3 inflammasome can be activated and regulated by HBV and HCV. It is found to exert antiviral function or mediates inflammatory response in viral infections depending on different experimental models. Besides NLRP3 inflammasome, IFI16 and AIM2 inflammasomes participate in the pathological process of hepatitis B, and NALP3 inflammasome may sense HCV infection in hepatocytes. The inflammasomes affect the pathological process of viral hepatitis through its downstream secretion of inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 or induction of pyroptosis resulting from cleaved gasdermin D (GSDMD). However, the roles of inflammasomes in different stages of viral infection remains mainly unclear. More proper experimental models of viral hepatitis should be developed for specific studies in future, so that we can understand more about the complexity of inflammasome regulation and multifunction of inflammasomes and their downstream effectors during HBV and HCV infections.


Assuntos
Hepacivirus , Vírus da Hepatite B , Hepatite B Crônica , Hepatite C Crônica , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Inflamassomos/imunologia , Hepatite C Crônica/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepacivirus/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/metabolismo , Vírus da Hepatite B/imunologia , Proteínas de Ligação a DNA/metabolismo , Interleucina-1beta/metabolismo , Piroptose , Animais , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Hepatócitos/virologia , Hepatócitos/imunologia , Interleucina-18/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Gasderminas
2.
Waste Manag ; 174: 240-250, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070443

RESUMO

Hematite tailings (HTs) are rich in silica and are used as replacements for fine aggregates in the preparation of construction materials. However, there is scope for a more effective utilization of the valuable elements present in HTs. In this paper, a process for preparing high-purity SiO2 using HTs procured from Ansteel (China) is proposed. HTs were treated using the superconducting high-gradient magnetic separation (S-HGMS) technology, where the silica as part of the nonmagnetic fraction was obtained in the form of a high-silica concentrate, which was then subjected to mixed-acid leaching to dissolve impurities to achieve refined purification. The optimum process conditions for S-HGMS were determined, and the response surface methodology was applied to optimize the process parameters of the mixed-acid leaching process. The process indicators of the mixed-acid leaching step included the leaching time, leaching temperature, and molar ratio of the mixed acids. The optimum process conditions for S-HGMS were as follows: the magnetic strength-to-velocity ratio in the weak magnetic separation stage was set to 0.034 T·s/m whereas it was maintained at 0.076 T·s/m in the strong magnetic separation stage; the pulp concentration was 40 g/L, the pulp velocity was 500 mL/min, and the dispersant concentration was 1 mg/g. Under these conditions, the high-silica pulp was processed. The corresponding SiO2 grade increased from 71.788 % to 95.260 %, and its recovery and yield reached 56.330 % and 42.450 %, respectively. The SiO2 content in the sample increased from 95.260 % to 99.961 %. Further, the mechanisms of the S-HGMS and mixed-acid leaching were revealed. The proposed process is environmentally friendly and operationally inexpensive. It can reduce the amount of HTs by 42.450 %, and the obtained high-purity silica product has high economic value and good industrialization prospects.


Assuntos
Compostos Férricos , Magnetismo , Dióxido de Silício , Temperatura , China
3.
J Environ Manage ; 348: 119273, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832299

RESUMO

Maximizing the utilization of industrial by-products, such as iron ore tailings (IOTs) and coal fly ash (CFA), is crucial toward sustainable development. This study provides a meticulous insight into the optimization, mechanism, and assessment of the co-utilization of IOTs and CFA for the preparation of porous ceramsite. Micro-CT results revealed that the prepared ceramsite exhibited an exceptional porosity, peaking at 56.98%, with a wide range of pore diameters (3.55-959.10 µm) under optimal conditions (IOTs content at 76%, preheating at 550 °C for 15 min, and sintering at 1177 °C for 14 min), while maintaining good mechanical properties (water adsorption of 1.28%, comprehensive strength of 8.75 MPa, apparent density of 1.37 g/cm3, and bulk density of 0.62 g/cm3). The primary parameters affecting the porosity were identified and ranked as follows: sintering temperature > IOTs content > sintering time. The formation and growth of pores could be attributed to the equilibrium relationship between the liquid-phase surface tension and the gas expansion force, accompanied by pore wall thinning and pore merging. Notably, the prepared ceramsite is both ecologically feasible and economically rewarding, boasting a profit margin of 9.47 $/ton. The comprehensive life cycle assessment (LCA) conducted further highlights the potential of its large-scale implementation for promoting sustainable development. This study provides an innovative strategy for the co-utilization of IOTs and CFA, with advantages such as cost-effectiveness, ecological feasibility and scalability of production.


Assuntos
Cinza de Carvão , Carvão Mineral , Porosidade , Ferro
4.
Front Physiol ; 14: 873584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288436

RESUMO

Objective: This study aimed to evaluate the results and complications related to revision total hip arthroplasty within a short-to-medium follow up period. Methods: From January 2016 to January 2020, we reviewed 31 prosthetic hip arthroplasty stem revisions using a fluted, tapered modular stem with distal fixation. The median age of the patients was 74.55-79 years. The survival rate was 100%, and there were no re-revisions. The Harris hip score improved from an average of 36.5 ± 7.8 before surgery to 81.8 ± 6.2 at the final follow-up. Results: The average final follow-up was 36 (24-60) months. During this time, there was no periprosthetic infection, no prosthesis loosening or breakage, and no sciatic nerve injury. Complications included four (12.9%) intraoperative fractures and eight (25.8%) dislocations that had no stem fractures. The postoperative limb was lengthened by 17.8 ± 9.8 mm. In most cases, bone regeneration was an early and important finding. Three cases underwent extended trochanteric osteotomy, and bone healing was achieved by the final follow-up. Conclusion: The modular tapered stem reviewed in this study was very versatile, could be used in most femoral revision cases, and allowed for rapid bone reconstruction. However, a long-term follow-up study is needed to confirm these results.

5.
J Environ Manage ; 342: 118286, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269724

RESUMO

Steel rolling sludge (SRS) is the by-product of metallurgical industry with abundant iron content, which needs to be utilized for producing high value-added products. Herein, cost-effective and highly adsorbent α-Fe2O3 nanoparticles were prepared from SRS via a novel solvent-free method and applied to treat As(III/V)-containing wastewater. The structure of the prepared nanoparticles was observed to be spherical with a small crystal size (12.58 nm) and high specific surface area (145.03 m2/g). The nucleation mechanism of α-Fe2O3 nanoparticles and the effect of crystal water were investigated. More importantly, compared with the traditional methods of preparation cost and yield, this study was found to have excellent economic benefits. The adsorption results indicated that the adsorbent could effectively remove arsenic over a wide pH range, and the optimal performance of nano adsorbent for As(III) and As(V) removal was observed at pH 4.0-9.0 and 2.0-4.0, respectively. The adsorption process was consistent with pseudo-second-order kinetic and Langmuir isothermal model. The maximum adsorption capacity (qm) of adsorbent for As(III) and As(V) was 75.67 mg/g and 56.07 mg/g, respectively. Furthermore, α-Fe2O3 nanoparticles exhibited great stability, and qm remained at 64.43 mg/g and 42.39 mg/g after five cycles. Particularly, the As(III) was removed by forming inner-sphere complexes with the adsorbent, and it partially oxidized to As(V) during this process. In contrast, the As(V) was removed by electrostatic adsorption and reaction with -OH on the adsorbent surface. Overall, resource utilization of SRS and the treatment of As(III)/(V)-containing wastewater in this study are in line with the current developments in the environmental and waste-to-value research.


Assuntos
Arsênio , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Esgotos , Águas Residuárias , Solventes , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Concentração de Íons de Hidrogênio
6.
J Med Virol ; 95(4): e28751, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185833

RESUMO

In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Síndrome da Liberação de Citocina , Interleucina-1
7.
Signal Transduct Target Ther ; 8(1): 194, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160897

RESUMO

Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection. Here, we uncovered SARS-CoV-2 imployed a distinct anti-apoptotic mechanism via its N protein. We found SARS-CoV-2 virus-like particles (trVLP) suppressed cell apoptosis, but the trVLP lacking N protein didn't. Further study verified that N protein repressed cell apoptosis in cultured cells, human lung organoids and mice. Mechanistically, N protein specifically interacted with anti-apoptotic protein MCL-1, and recruited a deubiquitinating enzyme USP15 to remove the K63-linked ubiquitination of MCL-1, which stabilized this protein and promoted it to hijack Bak in mitochondria. Importantly, N protein promoted the replications of IAV, DENV and ZIKV, and exacerbated death of IAV-infected mice, all of which could be blocked by a MCL-1 specific inhibitor, S63845. Altogether, we identifed a distinct anti-apoptotic function of the N protein, through which it promoted viral replication. These may explain how SARS-CoV-2 effectively replicates in asymptomatic individuals without cuasing respiratory dysfunction, and indicate a risk of enhanced coinfection with other viruses. We anticipate that abrogating the N/MCL-1-dominated apoptosis repression is conducive to the treatments of SARS-CoV-2 infection as well as coinfections with other viruses.


Assuntos
COVID-19 , Coinfecção , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , SARS-CoV-2 , COVID-19/genética , Replicação Viral/genética , Proteases Específicas de Ubiquitina
8.
Adv Biol (Weinh) ; 7(7): e2200336, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37132155

RESUMO

Colorectal cancer (CRC) is an intestinal malignant tumor with high morbidity and mortality worldwide. Inoperability or resistanance to radiation and chemotherapy occur in the conventional treatments against CRC. Oncolytic viruses (OVs) are one kind of virus that selectively infects and lyses cancer cells, which is considered to be a new anticancer therapy with biological and immune-based approaches. Enterovirus 71 (EV71), belonging to the enterovirus genus in the family Picornaviridae, is a single positive-stranded RNA virus. EV71 is transmitted in a fetal-oral route and infects gastrointestinal tract in infants. Here, EV71 is exploited to be a novel oncolytic virus in colorectal cancer. It is revealed that EV71 infection can selectively cause colorectal cancer cells cytotoxicity but not primary intestinal epithelial cells. Consistently, EV71 injection significantly inhibits tumor growth in nude mice xenografted colorectal cancer cells. In detail, EV71 infects colorectal cancer cells to repress the expression of Ki67 and B-cell leukemia 2 (Bcl-2) leading to the inhibition of cell proliferation, while activating the cleavage of poly-adenosine diphosphatase-ribose polymerase and Caspase-3 protein resulting in the promotion of cell apoptosis. The findings demonstrate the oncolytic feature of EV71 in CRC treatment and may provide a potential clue for clinical anticancer therapy.


Assuntos
Neoplasias Colorretais , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Vírus Oncolíticos , Camundongos , Animais , Enterovirus Humano A/genética , Camundongos Nus , Enterovirus/fisiologia , Infecções por Enterovirus/terapia , Neoplasias Colorretais/terapia
9.
J Environ Manage ; 339: 117932, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058924

RESUMO

Iron ore tailings (IOTs), a typical hazardous solid waste, seriously threaten human health and the ecological environment. However, the abundance of quartz, particularly in high-silica IOTs, renders them useful. Yet, state-of-the-art technologies have rarely reported the preparation of high-purity silica from high-silicon IOTs. Thus, this study proposed an eco-friendly technology for producing high-purity silica from high-silica IOTs through the coupling of superconducting high gradient magnetic separation (S-HGMS) preconcentration with leaching followed by the use of ultrasound-assisted fluorine-free acid solution. Following an analysis of the separation index and chemical composition, the optimum conditions for the quartz preconcentration were determined as a magnetic flow ratio of 0.068 T s/m, a slurry flow velocity of 500 mL/min, and a pulp concentration of 40 g/L. Consequently, the SiO2 grade increased from 69.32% in the raw sample to 93.12% in quartz concentrate following the application of S-HGMS, with the recovery reaching 45.24%. X-ray diffraction, vibrating sample magnetometer, and scanning electron microscope analyses indicated that quartz was effectively preconcentrated from the tailings by S-HGMS. Subsequently, employing the "ultrasound-assisted fluorine-free acid leaching process," impurity elements were removed and high-purity silica was produced. Under optimal leaching conditions, the SiO2 purity of silica sand increased to 97.42%. Following a three-stage acid leaching process with 4 mol/LHCl +2 mol/LH2C2O4, the removal efficiency of Al, Ca, Fe, and Mg exceeded 97% for all cases, and the SiO2 purity in high-purity silica reached 99.93%. Thus, this study proposes a new strategy for the preparation of high-purity quartz from IOTs, which facilitated the effective realization of the high-value utility of the tailings. Furthermore, it provides a theoretical basis for the industrial application of IOTs, which is of great scientific significance and practical application value.


Assuntos
Compostos de Ferro , Dióxido de Silício , Humanos , Dióxido de Silício/química , Flúor , Quartzo , Magnetismo
10.
J Med Virol ; 95(2): e28527, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36695658

RESUMO

Endosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection. Furthermore, we discovered that YM201636, a specific inhibitor of phosphoinositide kinase, FYVE finger containing (PIKFYVE) kinase, significantly suppressed EV71 replication and virus-induced inflammation in vitro and in vivo. Mechanistically, YM201636 inhibits PIKFYVE kinase to block the ESCRT pathway and endosomal transport, leading to the disruption of viral entry and replication complex in subcellular components and ultimately repression of intracellular RNA virus replication and virus-induced inflammatory responses. Further studies found that YM201636 broadly represses the replication of other RNA viruses, including coxsackievirus B3 (CVB3), poliovirus 1 (PV1), echovirus 11 (E11), Zika virus (ZIKV), and vesicular stomatitis virus (VSV), rather than DNA viruses, including adenovirus 3 (ADV3) and hepatitis B virus (HBV). Our findings shed light on the mechanism underlying PIKFYVE-modulated ESCRT pathway involved in RNA virus replication, and also provide a prospective antiviral therapy during RNA viruses infections.


Assuntos
Poliovirus , Infecção por Zika virus , Zika virus , Humanos , RNA , Zika virus/genética , Replicação Viral/fisiologia , Poliovirus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfatidilinositol 3-Quinases
11.
J Environ Manage ; 325(Pt A): 116417, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257224

RESUMO

Wastewater from non-ferrous metal smelting is known as one of the most dangerous sources of arsenic (As) due to its high acidity and high arsenic content. Herein, we propose a new environmental protection process for the efficient purification and removal of arsenic from wastewater by the formation of an AlAsO4@silicate core-shell structure based on the characteristics of aluminum-containing waste residue (AWR). At room temperature, the investigation with AWR almost achieved 100% As removal efficiency from wastewater, reducing the arsenic concentration from 5500 mg/L to 52 µg/L. With Al/As molar ratio of 3.5, the structural properties of AWR provided good adsorption sites for arsenic adsorption, leading to the formation of arsenate and insoluble aluminum arsenate with As. As-containing AWR silicate shells were produced under alkaline conditions, resulting in an arsenic leaching concentration of 1.32 mg/L in the TCLP test. AWR, as an efficient As removal and fixation agent, shows great potential in the treatment of copper smelting wastewater, and is expected to achieve large-scale industrial As removal.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/química , Águas Residuárias , Arseniatos/química , Alumínio/química , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
12.
Front Cell Infect Microbiol ; 13: 1309128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249297

RESUMO

Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1ß) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.


Assuntos
Inflamassomos , Infecções por Vírus de RNA , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1 , Interleucina-1beta
13.
Exp Ther Med ; 24(6): 750, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561964

RESUMO

Proline- and serine-rich 2 (PROSER2) is encoded by the 47th open reading frame on human chromosome 10. Bioinformatic analysis has shown PROSER2 was significantly correlated with prognostic outcome of osteosarcoma patients. Its role in the progression and metastasis of human osteosarcoma has not been elucidated until now. Bioinformatics analysis was performed on 101 patients with osteosarcoma from The Cancer Genome Atlas database. High levels of PROSER2 were associated with a poor prognosis in patients with osteosarcoma. PROSER2 expression was significantly upregulated in clinical specimens from patients with osteosarcoma and osteosarcoma cell lines. MTT assay was performed to test the cell viability and Transwell assay was used to test the migration and invasion of MG63 cells. PROSER2 knockdown inhibited the viability, migration and invasion of MG63 cells. Gene Set Enrichment Analysis and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes were primarily involved in 'calcium signaling pathway' and 'Wnt signaling' in patients with osteosarcoma and high PROSER2 expression. Western blotting analysis revealed that PROSER2 regulated migration and invasion of osteosarcoma via the Wnt/nuclear factor of activated T-cells (NFAT)c1 signaling pathway. In conclusion, PROSER2 promoted the proliferation, migration and invasion of osteosarcoma cells via the Wnt/Ca2+/NFATc1 signaling pathway by increasing nuclear localization of NFATc1.

14.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297681

RESUMO

Gene therapy is a promising approach for treating tumors. Conventional approaches of DNA delivery depending on non-viral or viral vectors are unsatisfactory due to the concerns of biosafety and cell-targeting efficiency. The question how to deliver DNA into tumor cells efficiently and selectively is a major technological problem in tumor gene therapy. Here, we develop a vector-free gene transfer strategy to deliver genes effectively and selectively by taking advantage of targeting nucleolin. Nucleolin, a shuttle protein moving between cell membrane, cytoplasm and nuclei, is overexpressed in tumor cells. It has a natural ligand G-quadruplex (Gq). Gq-linked DNA (Gq-DNA) is likely to be internalized by ligand dependent uptake mechanisms independently of vectors after neutralizing negative charges of cell membrane by targeting nucleolin. This strategy is referred to as Gq-DNA transfection. Benefiting from its high affinity to nucleolin, Gq-DNA can be effectively delivered into nucleolin-positive tumor cells even nuclei. Gq-DNA transfection is characterized by low cytotoxicity, high efficiency, ease of synthesis, high stability in serum, direct access into nuclei, and specific nucleolin-positive tumor cell targeting.

15.
Viruses ; 14(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298831

RESUMO

Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Imunidade Inata , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Antivirais/uso terapêutico
16.
Signal Transduct Target Ther ; 7(1): 218, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798726

RESUMO

Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.


Assuntos
Hipóxia , Neoplasias , Transdução de Sinais , Humanos , Hipóxia/genética , Neoplasias/genética , Neoplasias/terapia , Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
17.
Theranostics ; 12(8): 3776-3793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664070

RESUMO

Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood. Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples. Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation. Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Regiões 3' não Traduzidas , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Dinoprostona/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Nat Commun ; 12(1): 4664, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341353

RESUMO

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Assuntos
COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/metabolismo , Animais , COVID-19/virologia , Células Cultivadas , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamassomos/genética , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfoproteínas/metabolismo , Ligação Proteica , SARS-CoV-2/fisiologia , Células THP-1
19.
Virulence ; 12(1): 704-722, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33517839

RESUMO

Toll-like receptors (TLRs) are essential for the protection of the host from pathogen infections by initiating the integration of contextual cues to regulate inflammation and immunity. However, without tightly controlled immune responses, the host will be subjected to detrimental outcomes. Therefore, it is important to balance the positive and negative regulations of TLRs to eliminate pathogen infection, yet avert harmful immunological consequences. This study revealed a distinct mechanism underlying the regulation of the TLR network. The expression of sex-determining region Y-box 4 (Sox4) is induced by virus infection in viral infected patients and cultured cells, which subsequently represses the TLR signaling network to facilitate viral replication at multiple levels by a distinct mechanism. Briefly, Sox4 inhibits the production of myeloid differentiation primary response gene 88 (MyD88) and most of the TLRs by binding to their promoters to attenuate gene transcription. In addition, Sox4 blocks the activities of the TLR/MyD88/IRAK4/TAK1 and TLR/TRIF/TRAF3/TBK1 pathways by repressing their key components. Moreover, Sox4 represses the activation of the nuclear factor kappa-B (NF-κB) through interacting with IKKα/α, and attenuates NF-kB and IFN regulatory factors 3/7 (IRF3/7) abundances by promoting protein degradation. All these contributed to the down-regulation of interferons (IFNs) and IFN-stimulated gene (ISG) expression, leading to facilitate the viral replications. Therefore, we reveal a distinct mechanism by which viral pathogens evade host innate immunity and discover a key regulator in host defense.


Assuntos
Imunidade Inata/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Vírus/imunologia , Enterovirus Humano A/imunologia , Enterovirus Humano A/patogenicidade , Células Hep G2 , Humanos , Imunidade Inata/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Replicação Viral , Vírus/patogenicidade
20.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203755

RESUMO

Enteroviruses infect gastrointestinal epithelium cells, cause multiple human diseases, and present public health risks worldwide. However, the mechanisms underlying host immune responses in intestinal mucosa against the early enterovirus infections remain elusive. Here, we showed that human enteroviruses including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1) predominantly induce type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), in cultured human normal and cancerous intestine epithelial cells (IECs), mouse intestine tissues, and human clinical intestine specimens. Mechanistic studies demonstrated that IFN-λ production is induced upon enterovirus infection through the Toll-like receptor 3/interferon regulatory factor 1 (TLR3/IRF1) signaling pathway in IECs. In turn, the supplementation of IFN-λ subsequently induces intrinsically antiviral responses against enterovirus replication. Notably, intraperitoneal injection in neonatal C57BL/6J mice with mouse recombinant IFN-λ2 protein represses EV71 replication and protects mice from viral lethal effects. Altogether, these results revealed a distinct mechanism by which the host elicited immune responses against enterovirus infections in intestine through activating the TLR3/IRF1/type III IFN axis. The new findings would provide an antiviral strategy for the prevention and treatment of enterovirus infections and associated diseases.IMPORTANCE Enterovirus infections are significant sources of human diseases and public health risks worldwide, but little is known about the mechanism of innate immune response in host intestine epithelial surface during the viral replication. We reported the epithelial immune response in cultured human normal and cancerous cells (IECs), mouse tissues, and human clinical intestine specimens following infection with enterovirus 71. The results mechanistically revealed type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), as the dominant production through TLR3/IRF1 signaling upon multiple human enterovirus infection, including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1). IFN-λ subsequently induced antiviral activity against enterovirus replication in vitro and in vivo. These studies uncovered the role of the novel process of type III IFN production involved in the TLR3/IRF1 pathway in host intestine upon enterovirus infection, which highlighted a regulatory manner of antiviral defense in intestine during enterovirus infection.


Assuntos
Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Imunidade Inata , Fator Regulador 1 de Interferon/metabolismo , Interferons/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Enterovirus/genética , Enterovirus/fisiologia , Infecções por Enterovirus/virologia , Feminino , Humanos , Fator Regulador 1 de Interferon/genética , Interferons/genética , Intestinos/imunologia , Intestinos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptor 3 Toll-Like/genética , Replicação Viral , Interferon lambda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA