Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Explor Target Antitumor Ther ; 4(5): 1122-1127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023993

RESUMO

Many human cancers carry missense mutations in or deletions of the tumor protein 53 (TP53) tumor suppressor gene. TP53's product, p53 regulates many biological processes, including cell metabolism. Cholesterol is a key lipid needed for the maintenance of membrane function and tissue homeostasis while also serving as a precursor for steroid hormone and bile acid synthesis. An over-abundance of cholesterol can lead to its esterification and storage as cholesterol esters. The recent study has shown that the loss of p53 leads to excessive cholesterol ester biosynthesis, which promotes hepatocellular carcinoma in mice. Blocking cholesterol esterification improves treatment outcomes, particularly for liver cancers with p53 deletions/mutations that originate in a background of non-alcoholic fatty liver disease.

2.
PeerJ ; 11: e15654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520246

RESUMO

Background: Killer cell lectin-like receptor B1 (KLRB1) is an important member of the natural killer cell gene family. This study explored the potential value of KLRB1 as a breast cancer (BC) biomarker and its close association with the tumor immune microenvironment during the development of BC. Methods: We examined the differential expression of KLRB1 in pan-cancer. Clinical and RNA-Seq data from BC samples were evaluated in The Cancer Genome Atlas (TCGA) and validated in Gene Expression Omnibus (GEO) datasets and by immunohistochemistry (IHC) staining. The relationship between KLRB1 and clinical parameters was explored through Chi-square tests. The diagnostic value of KLRB1 was evaluated using a receiver operating characteristic (ROC) curve. Survival analysis was tested by Kaplan-Meier curves to demonstrate the relationship between KLRB1 and survival. Univariable and multivariate cox regression analyses were carried out as well. The analysis of immune infiltration level and gene set enrichment analysis (GSEA) were conducted to examine KLRB1's mechanism during the progression of BC. We used the Tumor Immune Estimation Resource (TIMER), the Cancer Single-cell Expression Map (CancerSCEM) database, the Tumor Immune Single-cell Hub (TISCH) database, and the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method to explore KLRB1's association with immune infiltration level and different quantitative distribution of immune cells. The relevant signaling pathways in BC associated with KLRB1 were identified using GSEA. Results: The expression of KLRB1 was downregulated across the majority of cancers including BC. The lower KLRB1 expression group exhibited shorter relapse free survival (RFS) and overall survival (OS). IHC staining showed that KLRB1 staining was weaker in breast tumor tissues than in paratumors. Additionally, GSEA identified several pathway items distinctly enriched in BC. KLRB1 expression level was also positively related to the infiltrating number of immune cells in BC. Moreover, the CancerSCEM and TISCH databases as well as the CIBERSORT method demonstrated the close relationship between KLRB1 and immune cells, particularly macrophages. Conclusion: Low KLRB1 expression was considered an independent prognostic biomarker and played an important role in the tumor immune microenvironment of BC patients.

3.
Nat Commun ; 14(1): 4300, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463921

RESUMO

Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia
4.
Front Oncol ; 13: 1177120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228500

RESUMO

Background: Recent studies have suggested that long non-coding RNAs (lncRNAs) may play crucial role in low-grade glioma; however, the underlying mechanisms linking them to epigenetic methylation remain unclear. Methods: We downloaded expression level data for regulators associated with N1 methyladenosine (m1A), 5-methyladenine (m5C), and N6 methyladenosine (m6A) (M1A/M5C/M6A) methylation from the Cancer Genome Atlas-low-grade glioma (TCGA-LGG) database. We identified the expression patterns of lncRNAs, and selected methylation-related lncRNAs using Pearson correlation coefficient>0.4. Non-negative matrix dimensionality reduction was then used to determine the expression patterns of the methylation-associated lncRNAs. We constructed a weighted gene co-expression network analysis (WGCNA) network to explore the co-expression networks between the two expression patterns. Functional enrichment of the co-expression network was performed to identify biological differences between the expression patterns of different lncRNAs. We also constructed prognostic networks based on the methylation presence in lncRNAs in low-grade gliomas. Results: We identified 44 regulators by literature review. Using a correlation coefficient greater than 0.4, we identified 2330 lncRNAs, among which 108 lncRNAs with independent prognostic values were further screened using univariate Cox regression at P< 0.05. Functional enrichment of the co-expression networks revealed that regulation of trans-synaptic signaling, modulation of chemical synaptic transmission, calmodulin binding, and SNARE binding were mostly enriched in the blue module. The calcium and CA2 signaling pathways were associated with different methylation-related long non-coding chains. Using the Least Absolute Shrinkage Selector Operator (LASSO) regression analysis, we analyzed a prognostic model containing four lncRNAs. The model's risk score was 1.12 *AC012063 + 0.74 * AC022382 + 0.32 * AL049712 + 0.16 * GSEC. Gene set variation analysis (GSVA) revealed significant differences in mismatch repair, cell cycle, WNT signaling pathway, NOTCH signaling pathway, Complement and Cascades, and cancer pathways at different GSEC expression levels. Thus, these results suggest that GSEC may be involved in the proliferation and invasion of low-grade glioma, making it a prognostic risk factor for low-grade glioma. Conclusion: Our analysis identified methylation-related lncRNAs in low-grade gliomas, providing a foundation for further research on lncRNA methylation. We found that GSEC could serve as a candidate methylation marker and a prognostic risk factor for overall survival in low-grade glioma patients. These findings shed light on the underlying mechanisms of low-grade glioma development and may facilitate the development of new treatment strategies.

5.
Cell Death Dis ; 14(2): 87, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750554

RESUMO

The metabolic pathways through which p53 functions as a potent tumor suppressor are incompletely understood. Here we report that, by associating with the Vitamin D receptor (VDR), p53 induces numerous genes encoding enzymes for peroxisomal fatty acid ß-oxidation (FAO). This leads to increased cytosolic acetyl-CoA levels and acetylation of the enzyme 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC), which catalyzes the last two steps in the purine biosynthetic pathway. This acetylation step, mediated by lysine acetyltransferase 2B (KAT2B), occurs at ATIC Lys 266, dramatically inhibits ATIC activity, and inversely correlates with colorectal cancer (CRC) tumor growth in vitro and in vivo, and acetylation of ATIC is downregulated in human CRC samples. p53-deficient CRCs with high levels of ATIC is more susceptible to ATIC inhibition. Collectively, these findings link p53 to peroxisomal FAO, purine biosynthesis, and CRC pathogenesis in a manner that is regulated by the levels of ATIC acetylation.


Assuntos
Hidroximetil e Formil Transferases , Proteína Supressora de Tumor p53 , Humanos , Purinas , Ácidos Graxos
6.
Adv Sci (Weinh) ; 10(12): e2204909, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808719

RESUMO

ß-catenin signaling is abnormally activated in cancer. Here, this work screens the mevalonate metabolic pathway enzyme PMVK to stabilize ß-catenin signaling using a human genome-wide library. On the one hand, PMVK-produced MVA-5PP competitively binds to CKIα to prevent ß-catenin Ser45 phosphorylation and degradation. On the other hand, PMVK functions as a protein kinase to directly phosphorylate ß-catenin Ser184 to increase its protein nuclear localization. This synergistic effect of PMVK and MVA-5PP together promotes ß-catenin signaling. In addition, PMVK deletion impairs mouse embryonic development and causes embryonic lethal. PMVK deficiency in liver tissue alleviates DEN/CCl4 -induced hepatocarcinogenesis. Finally, the small molecule inhibitor of PMVK, PMVKi5, is developed and PMVKi5 inhibits carcinogenesis of liver and colorectal tissues. These findings reveal a non-canonical function of a key metabolic enzyme PMVK and a novel link between the mevalonate pathway and ß-catenin signaling in carcinogenesis providing a new target for clinical cancer therapy.


Assuntos
Ácido Mevalônico , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Desenvolvimento Embrionário , Transdução de Sinais/fisiologia
7.
Hepatology ; 77(5): 1499-1511, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398929

RESUMO

BACKGROUND AND AIMS: Cholesterol ester (CE) biosynthesis and homeostasis play critical roles in many cancers, including HCC, but their exact mechanistic contributions to HCC disease development require further study. APPROACH AND RESULTS: Here, we report on a proposed role of tumor suppressor P53 in its repressing ubiquitin-specific peptidase 19 (USP19) and sterol O-acyltransferase (SOAT) 1, which maintains CE homeostasis. USP19 enhances cholesterol esterification and contributes to hepatocarcinogenesis (HCG) by deubiquitinating and stabilizing SOAT1. Loss of either SOAT1 or USP19 dramatically attenuates cholesterol esterification and HCG in P53-deficient mice fed with either a normal chow diet or a high-cholesterol, high-fat diet (HCHFD). SOAT1 inhibitor avasimibe has more inhibitory effect on HCC progression in HCHFD-maintained P53-deficient mice when compared to the inhibitors of de novo cholesterol synthesis. Consistent with our findings in the mouse model, the P53-USP19-SOAT1 signaling axis is also dysregulated in human HCCs. CONCLUSIONS: Collectively, our findings demonstrate that SOAT1 participates in HCG by increasing cholesterol esterification, thus indicating that SOAT1 is a potential biomarker and therapeutic target in P53-deficient HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Esterificação , Carcinoma Hepatocelular/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Hepáticas/genética , Colesterol , Endopeptidases
8.
BMC Cancer ; 22(1): 1267, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471278

RESUMO

BACKGROUND: Breast cancer (BC) is the most common malignant tumor among women worldwide. Tissue transglutaminase 2 (TG2) has been reported as a major player across several types of cancer. However, the effects of TG2 in breast cancer are less known. METHODS: The expression of TG2 in patients with BC was detected by immunochemistry staining and RT-qPCR. The correlation of TG2 expression and clinicopathological factors or overall survival (OS) was analyzed by Chi-square test, Kaplan-Meier, and Cox-regression analysis. The effects of TG2 on cell proliferation and glycolysis were investigated in vivo and in vitro by gain- and loss-of-function experiments. RESULT: Both mRNA and protein levels of TG2 were overexpressed in BC tissues and cultured cells. Clinical stage (p = 0.011), molecular subtype (p<0.001) and survival status (p<0.001) were significantly correlated with TG2 expression. Specifically, TG2 expression was positively associated with the clinical stage (r = 0.193, p = 0.005) and OS (r = 0.230, p = 0.001), while negatively associated with molecular subtype (r = - 0.161, p = 0.020). Overexpressed TG2 was a prognostic factor of poor OS by Cox-regression analysis. Gain- and loss-of-function experiments indicated that cell proliferation and glycolysis were regulated by TG2 via the MEK/ERK/LDH pathway. TG2-induced activation of the MEK/ERK/LDH pathway and glycolysis were attenuated by MEK inhibitor U0126. CONCLUSION: TG2 is overexpressed in BC, which can serve as an independent prognostic factor for OS. TG2 promotes tumor cell proliferation and increases glycolysis associated with the activation of the MEK/ERK/LHD pathway.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteína 2 Glutamina gama-Glutamiltransferase , Feminino , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Prognóstico , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo
9.
Front Vet Sci ; 9: 970818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246325

RESUMO

A strain of avian leukosis virus (ALV) belonging to a new envelope subgroup J (ALV-J) emerged in 1988 as a new subgroup of ALV and spread rapidly throughout the world. Due to the infection and spread of ALV-J, the global poultry industry experienced a significant loss. Although the disease had been prevented and controlled effectively by culling domestic chickens in the infected zone, a few field cases of ALV-J infection were reported in China in recent years. This study was conducted to characterize the genome and analyze the lesions and histopathology of the ALV-J strain named HB2020, which was isolated from layer chickens in Hubei Province, China. The full-length proviral genome sequence analysis of ALV-J HB2020 revealed that it was a recombinant strain of ev-1 and HPRS-103 in the gag gene in comparison to ALV-J prototype HPRS-103. In the 3'-untranslated region (3'UTR) of the nucleotide sequence, there were found 205-base pairs (bp) deletion, of which 175 were detected in the redundant transmembrane (rTM) region. Besides, the surface glycoprotein gene gp85 had five mutations in a conservative site, whereas the transmembrane protein gene gp37 was relatively conserved. The animal experiments conducted later on this strain have shown that HB2020 can cause various neoplastic lesions in chickens, including enlarged livers with hemangiomas and spleens with white nodules. Additionally, as the exposure time increased, the number of tumor cells that resembled myelocytes in the blood smears of infected chickens gradually increased. These results indicated that HB2020 on recombination with ALV subgroup E (ALV-E) and ALV-J could induce severe hemangiomas and myelocytomas. This inference might provide a molecular basis for further research about the pathogenicity of ALV and emphasize the need for control and prevention of avian leukosis.

10.
J Hematol Oncol ; 15(1): 120, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038892

RESUMO

Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Metabolismo dos Lipídeos , Lipogênese , Neoplasias/patologia , Processamento de Proteína Pós-Traducional
11.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34914638

RESUMO

Colorectal cancer (CRC) severely threatens human health and life span. An effective therapeutic strategy has not been established because we do not clearly know its pathogenesis. Here, we report that ceramide and sterol O-acyltransferase 1 (SOAT1) have roles in both spontaneous and chemical-induced intestinal cancers. We first found that miRNA-148a deficiency dramatically increased mouse gut dysbiosis through upregulating ceramide synthase 5 (Cers5) expression, which promoted ceramide synthesis afterward. The newly generated ceramide further promoted both azoxymethane/dextran sodium sulfate-induced (AOM/DSS-induced) and ApcMin/+ spontaneous intestinal tumorigenesis via increasing mouse gut dysbiosis. Meanwhile, increased level of ceramide correlated with the significant enhancements of both ß-catenin activity and colorectal tumorigenesis in a TLR4-dependent fashion. Next, we found a direct binding of ß-catenin to SOAT1 promoter to activate transcriptional expression of SOAT1, which further induced cholesterol esterification and colorectal tumorigenesis. In human patients with CRC, the same CERS5/TLR4/ß-catenin/SOAT1 axis was also found to be dysregulated. Finally, the SOAT1 inhibitor (avasimibe) showed significant levels of therapeutic effects on both AOM/DSS-induced and ApcMin/+ spontaneous intestinal cancer. Our study clarified that ceramide promoted CRC development through increasing gut dysbiosis, further resulting in the increase of cholesterol esterification in a SOAT1-dependent way. Treatment with avasimibe to specifically decrease cholesterol esterification could be considered as a clinical strategy for effective CRC therapy in a future study.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Colesterol/metabolismo , Neoplasias Colorretais/genética , Disbiose/complicações , Regulação Neoplásica da Expressão Gênica , Esterol O-Aciltransferase/genética , Animais , Ceramidas/toxicidade , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Disbiose/induzido quimicamente , Disbiose/patologia , Esterificação/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Esterol O-Aciltransferase/biossíntese
12.
Cell Rep ; 37(13): 110174, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965422

RESUMO

Lipogenesis plays a critical role in colorectal carcinogenesis, but precisely how remains unclear. Here, we show that ERK2 phosphorylates ME1 at T103, thereby inhibiting its polyubiquitination and proteasomal degradation and enhancing its interaction with USP19. USP19 antagonizes RNF1-mediated ME1 degradation by deubiquitination, which in turn promotes lipid metabolism and NADPH production and suppresses ROS. Meanwhile, ROS dramatically increases PD-L1 mRNA levels through accelerating expression of the transcription factor NRF2. Increased lipid metabolism is correlated with ERK2 activity and colorectal carcinogenesis in human patients. Therefore, the combination of ERK2 inhibitor and anti-PD-L1 antibody significantly inhibits spontaneous and chemically induced colorectal carcinogenesis. Collectively, the USP19-ME1 axis plays a vital role in colorectal carcinogenesis and may also provide a potential therapeutic target.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Neoplasias Colorretais/patologia , Endopeptidases/metabolismo , Lipogênese , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Ubiquitinação , Proteínas de Transporte Vesicular/química , Idoso , Idoso de 80 Anos ou mais , Aminopiridinas/farmacologia , Animais , Carcinogênese , Estudos de Casos e Controles , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Endopeptidases/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosforilação , Pirróis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Cell Death Differ ; 28(7): 2112-2125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33568778

RESUMO

The ubiquitin-proteasome system regulates many distinct biological processes. Its dysregulation causes various diseases, including but not limited to cancer. In this study, based on the analysis of gene expression in several colorectal cancer (CRC) datasets, we show that FBXL6, a poorly-characterized F-box protein, is amplified, over-expressed, and highly correlated with poor prognosis in human CRC patients. Mechanistically, FBXL6 targets phospho-p53 (S315) to mediate its polyubiquitination and proteasomal degradation, thereby inhibiting p53 signaling. FBXL6 depletion inhibits proliferation of p53 wild-type (WT) CRC cells by inducing cell cycle arrest and apoptosis. Furthermore, p53 transcriptionally suppresses FBXL6 expression by binding its core promoter region. Taken together, these results identify the feed-forward loop of FBXL6-p53 as a potential therapeutic target for CRC treatments.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas F-Box/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Apoptose , Carcinogênese/genética , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/genética
14.
Hepatology ; 73(1): 160-174, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32221968

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death that develops as a consequence of obesity, cirrhosis, and chronic hepatitis. However, the pathways along which these changes occur remain incompletely understood. APPROACH AND RESULTS: In this study, we show that the deubiquitinase USP30 is abundant in HCCs that arise in mice maintained on high-fat diets. IKKß phosphorylated and stabilized USP30, which promoted USP30 to deubiquitinate ATP citrate lyase (ACLY) and fatty acid synthase (FASN). IKKß also directly phosphorylated ACLY and facilitated the interaction between USP30 and ACLY and the latter's deubiquitination. In HCCs arising in DEN/CCl4 -treated mice, USP30 deletion attenuated lipogenesis, inflammation, and tumorigenesis regardless of diet. The combination of ACLY inhibitor and programmed death ligand 1 antibody largely suppressed chemical-induced hepatocarcinogenesis. The IKKß-USP30-ACLY axis was also found to be up-regulated in human HCCs. CONCLUSIONS: This study identifies an IKKß-USP30-ACLY axis that plays an essential and wide-spread role in tumor metabolism and may be a potential therapeutic target in HCC.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Carcinogênese/genética , Quinase I-kappa B/metabolismo , Lipogênese/genética , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/metabolismo , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Dieta Hiperlipídica , Humanos , Quinase I-kappa B/genética , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mitocondriais/genética , Fosforilação , Tioléster Hidrolases/genética
15.
Micromachines (Basel) ; 11(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899336

RESUMO

Long-term reliability of intracortical microelectrodes remains a challenge for increased acceptance and deployment. There are conflicting reports comparing measurements associated with recording quality with postmortem histology, in attempts to better understand failure of intracortical microelectrodes (IMEs). Our group has recently introduced the assessment of motor behavior tasks as another metric to evaluate the effects of IME implantation. We hypothesized that adding the third dimension to our analysis, functional behavior testing, could provide substantial insight on the health of the tissue, success of surgery/implantation, and the long-term performance of the implanted device. Here we present our novel analysis scheme including: (1) the use of numerical formal concept analysis (nFCA) and (2) a regression analysis utilizing modern model/variable selection. The analyses found complimentary relationships between the variables. The histological variables for glial cell activation had associations between each other, as well as the neuronal density around the electrode interface. The neuronal density had associations to the electrophysiological recordings and some of the motor behavior metrics analyzed. The novel analyses presented herein describe a valuable tool that can be utilized to assess and understand relationships between diverse variables being investigated. These models can be applied to a wide range of ongoing investigations utilizing various devices and therapeutics.

16.
Anal Chem ; 92(12): 8444-8449, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32410443

RESUMO

Monitoring RNA synthesis and spatial distribution can help to understand its role in physiology and diseases. However, visualizing newly synthesized RNA in single cells remains a great challenge. Here, we developed a bioorthogonal labeling-primed DNA amplification strategy to visualize newly synthesized RNA in single cells. The new bioorthogonal N6-allyladenosine nucleoside was prepared to metabolically label cellular newly synthesized RNAs. These allyl-functionalized RNAs then reacted with tetrazine-modified primers. These primers could initiate rolling circle amplification, producing tandem periodic long single DNA strands to capture hundreds of fluorescence probes for signal amplification. Using this method, we explored the subcellular distributions of newly synthesized RNAs. And we found that newly synthesized RNAs are spatially organized in a cell type-specific style with cell-to-cell heterogeneity.


Assuntos
DNA de Neoplasias/química , Hibridização in Situ Fluorescente , Técnicas de Amplificação de Ácido Nucleico , RNA Neoplásico/análise , Carbocianinas/química , Primers do DNA/química , DNA de Neoplasias/genética , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , Imagem Óptica , RNA Neoplásico/síntese química , RNA Neoplásico/genética , Análise de Célula Única , Células Tumorais Cultivadas
17.
Anal Chem ; 92(13): 9356-9361, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32456418

RESUMO

Splice variants visualization is pivotal for a deeper understanding of cell growth and development. However, it remains technically challenging due to short lengths, similar sequences, and low abundance. The existing single-cell imaging strategies suffer from nonspecific amplification that causes considerable noise during visualization of the splice variants. Herein we develop a new RNA-primed amplification strategy for noise-suppressed visualization of single-cell splice variants. Block probes were designed to specifically identify the conjugated region of exons in mRNA, which was then digested by endonuclease and provided a hydroxyl group at the 3' terminal. The RNA target can act as primer to trigger rolling circle amplification, achieving visualization of splice variants with noise suppressed to nearly zero. We further explored the expression and distribution of BRCA1 splice variants in three breast cell lines, revealing cell-type specific mapping of this cancer suppressor gene.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Splicing de RNA , RNA Mensageiro/metabolismo , Proteína BRCA1/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sondas de DNA/química , Sondas de DNA/metabolismo , Feminino , Humanos , Microscopia Confocal , RNA Mensageiro/análise , Análise de Célula Única/métodos
18.
Oncogene ; 39(11): 2437-2449, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31974474

RESUMO

Metabolic alteration for adaptation of the local environment has been recognized as a hallmark of cancer. GNPAT dysregulation has been implicated in hepatocellular carcinoma (HCC). However, the precise posttranslational regulation of GNPAT is still undiscovered. Here we show that ACAT1 is upregulated in response to extra palmitic acid (PA). ACAT1 acetylates GNPAT at K128, which represses TRIM21-mediated GNPAT ubiquitination and degradation. Conversely, GNPAT deacetylation by SIRT4 antagonizes ACAT1's function. GNPAT represses TRIM21-mediated FASN degradation and promotes lipid metabolism. Furthermore, shRNA-mediated ACAT1 ablation and acetylation deficiency of GNPAT repress lipid metabolism and tumor progression in xenograft and DEN/CCl4-induced HCC. Otherwise, ACAT1 inhibitor combination with sorafenib enormously retards tumor formation in mice. Collectively, we demonstrate that stabilization of FASN by ACAT1-mediated GNPAT acetylation plays a critical role in hepatocarcinogenesis.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Carcinoma Hepatocelular/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias Hepáticas/metabolismo , Acetilação , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Xenoenxertos , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Ácido Palmítico/farmacologia , Regulação para Cima
19.
J Cancer ; 11(2): 345-352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31897230

RESUMO

Rac activation is precisely regulated temporally and spatially by intracellular signaling pathways in migrating cells to guarantee the formation of specific cell protrusions-lamellipodia at the leading edge. Integrins-mediated adhesions also control the signaling pathway for localized Rac activation in the cells, but very few studies have been addressed in this field. In the study, we aim to focus on how integrin-mediated signaling affects localized Rac activation by reducing the paxillin expression with shRNA targeting paxillin. The results revealed that reduction of the paxillin expression in the cells inhibited the formation of focal adhesions and Rac activation. By using Rac FRET biosensor, Rac activation was localized at the leading edge of the cell, within the lamellipodium. A ternary complex of paxillin-GIT1-PIX could establish the signaling pathway in front of the cells. Thus, we described a mechanism of integrin-mediated signaling for localized Rac activation that upon ligand binding, activated integrin via the signaling pathway paxillin-GIT1-PIX promotes localized Rac activation at the leading edge and cell migration.

20.
Oncogene ; 39(4): 786-800, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548613

RESUMO

Although rRNA metabolism-related genes have been reported to be associated with human cancer, a systematic assessment of rRNA metabolism-related genes across human cancers is lacking. Thus, we performed a Pan-cancer analysis of rRNA metabolism-related genes across 20 human cancers. Here, we examined mRNA expression, mutation, DNA methylation, copy number variation (CNV) and clinical landscape of rRNA metabolism-related genes in more than 8600 patients across 20 human cancers from The Cancer Genome Atlas (TCGA) dataset. Besides, ten independent Gene Expression Omnibus (GEO) datasets, Cancer Cell Line Encyclopedia (CCLE) dataset and Project Achilles dataset were used to verify our study. A landscape of rRNA metabolism-related genes was established across 20 human cancers. The results suggest that rRNA metabolism-related genes are upregulated in multiple cancers, particularly in digestive and respiratory system cancers. Most of the upregulated genes were driven by CNV gain rather than mutation or DNA hypomethylation. We systematically identified CNV-driven rRNA metabolism-related genes with clinical relevance, including EXOSC8. Finally, functional experiments confirmed the oncogenic roles of EXOSC8 in colorectal carcinoma. Our study highlights the important roles of rRNA metabolism-related genes in tumorigenesis as prognostic biomarkers.


Assuntos
Variações do Número de Cópias de DNA , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Amplificação de Genes , Neoplasias/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Modelos Animais de Doenças , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA