Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Adv Sci (Weinh) ; : e2402962, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951958

RESUMO

The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing. The dominance of screw-type dislocation dipoles in the dislocation cells is reported. However, the majority of dislocations in sub-grain boundaries (SGBs) are geometrically necessary dislocations (GNDs) with varying types. The disparity in dislocation types can be attributed to the variation in local stacking fault energy (SFE) arising from chemical heterogeneity. The presence of screw-type dislocations facilitates the unpinning of dislocations from dislocation cells/SGBs, resulting in a high dislocation mobility. In contrast, the migration of SGBs with dominating edge-type GNDs requires collaborative motion of dislocations, leading to a sluggish migration rate and an enhanced thermal stability. This work emphasizes the significant role of dislocation type in the thermal stability of cellular structures. Furthermore, it sheds light on how to locally tune dislocation structures with desired dislocation types by adjusting local chemistry-dependent SFE and heat treatment.

2.
Animals (Basel) ; 14(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891754

RESUMO

Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with Vibrio infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in Crassostrea gigas, which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens. In light of this, we performed a transcriptome analysis of gill tissues obtained from C. gigas infected with Vibrio alginolyticus for 12 h and 48 h. Through this analysis, we identified 1024 differentially expressed genes (DEGs) at 12 h post-injection and 1079 DEGs at 48 h post-injection. Enrichment analysis of these DEGs revealed a significant association with immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To further investigate the immune response, we constructed a protein-protein interaction (PPI) network using the DEGs enriched in immune-associated KEGG pathways. This network provided insights into the interactions and relationships among these genes, shedding light on the underlying mechanisms of the innate immune defense mechanism in oyster gills. To ensure the accuracy of our findings, we validated 16 key genes using quantitative RT-PCR. Overall, this study represents the first exploration of the innate immune defense mechanism in oyster gills using a PPI network approach. The findings provide valuable insights for future research on oyster pathogen control and the development of oysters with enhanced antimicrobial resistance.

3.
Commun Biol ; 7(1): 770, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918569

RESUMO

Cancer is an evolutionary process shaped by selective pressure from the microenvironments. However, recent studies reveal that certain tumors undergo neutral evolution where there is no detectable fitness difference amongst the cells following malignant transformation. Here, through computational modeling, we demonstrate that negative frequency-dependent selection (or NFDS), where the immune response against cancer cells depends on the clonality of neoantigens, can lead to an immunogenic landscape that is highly similar to neutral evolution. Crucially, NFDS promotes high antigenic heterogeneity and early immune evasion in hypermutable tumors, leading to poor responses to immune checkpoint blockade (ICB) therapy. Our model also reveals that NFDS is characterized by a negative association between average clonality and total burden of neoantigens. Indeed, this unique feature of NFDS is common in the whole-exome sequencing (WES) datasets (357 tumor samples from 275 patients) from four melanoma cohorts with ICB therapy and a non-small cell lung cancer (NSCLC) WES dataset (327 tumor samples from 100 patients). Altogether, our study provides quantitative evidence supporting the theory of NFDS in cancer, explaining the high prevalence of neutral-looking tumors. These findings also highlight the critical role of frequency-dependent selection in devising more efficient and predictive immunotherapies.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Evasão Tumoral , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Melanoma/imunologia , Melanoma/terapia , Melanoma/genética , Melanoma/tratamento farmacológico , Microambiente Tumoral/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia
5.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665223

RESUMO

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

6.
Nature ; 626(7998): 411-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297130

RESUMO

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Assuntos
Desidrocolesteróis , Ferroptose , Humanos , Membrana Celular/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Desidrocolesteróis/metabolismo , Genoma Humano , Nefropatias/metabolismo , Membranas Mitocondriais/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo
7.
J Fluoresc ; 34(1): 425-436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284963

RESUMO

A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 µg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.


Assuntos
Estrogênios , Carne , Estrogênios/análise , Cromatografia Líquida de Alta Pressão/métodos , Carne/análise
8.
Abdom Radiol (NY) ; 49(3): 814-822, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38150141

RESUMO

BACKGROUND: To determine the utility of virtual-monoenergetic imaging (VMI) at low energy levels from contrast-enhanced dual-layer dual-energy (DLDE) computed tomography enterography (CTE) in the preoperative assessment of internal penetrating lesions of Crohn's disease (CD). MATERIALS AND METHODS: Thirty-eight patients with penetrating lesions of CD by surgery undergoing contrast-enhanced DLDE CTE were retrospectively included. Polyenergetic imaging (PEI) and VMIs at low energy levels [40-70 kiloelectron volts (keV)] with 10 keV intervals were reconstructed. The objective parameters of image quality [noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)] and the subjective parameter of image quality [diagnostic performance of lesions (DPL), overall image quality(OIQ)] of PEI and all VMIs at the low energy level were compared to determine the VMI on the optimal energy level. The lesion detection capability between PEI and the optimal VMI was compared. RESULTS: VMI40 was determined to be the optimal VMI among all VMIs at the low energy level for owning the best image quality. No significant difference was found in the detecting capability in penetrating lesions between VMI40 and PEI (p = 1.0), whereas a significant difference was found in the detecting capability in the bowel origin of the penetrating lesions (p = 0.004), the involved organ or structure by the fistula (p = 0.016) and the orifice of the fistula connected to the involved organ or structure ( p = 0.031) between them. CONCLUSIONS: Compared to conventional PEI, VMI40 improves the detection capability in anatomical details of penetrating lesions of CD, helping colorectal surgeons rationalizing preoperative plans of internal penetrating lesions of CD.


Assuntos
Doença de Crohn , Fístula , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/cirurgia , Estudos Retrospectivos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
9.
Anal Chem ; 95(46): 17089-17098, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37940603

RESUMO

Molecular diffusion and leakage impede the long-term retention of probes/drugs and may cause potential adverse effects in theranostic fields. Spatiotemporally manipulating the organelle-immobilization behavior of probes/drugs for prolonged tumor retention is indispensable to achieving effective cancer diagnosis and therapy. Herein, we propose a rational strategy that could realize near-infrared light-activated ribonucleic acids (RNAs) cross-linking for prolonged tumor retention and simultaneously endogenous hydrogen sulfide (H2S) monitoring in colorectal tumors. Profiting from efficient singlet oxygen (1O2) generation from Cy796 under 808 nm light irradiation, the 1O2-animated furan moiety in Cy796 could covalently cross-link with cytoplasmic RNAs via a cycloaddition reaction and realize organelle immobilization. Subsequently, specific thiolysis of Cy796 assisted with H2S resulted in homologous product Cy644 with reduced 1O2 generation yields and enhanced absolute fluorescence quantum yields (from 7.42 to 27.70%) with blue-shifted absorption and emission, which avoided the molecular oxidation fluorescence quenching effect mediated by 1O2 and validated fluorescence imaging. Furthermore, studies have demonstrated that our proposed strategy possessed adequate capacity for fluorescence imaging and endogenous H2S detection in HCT116 cells, particularly accumulated at the tumor sites, and retained long-term imaging with excellent biocompatibility. The turn-on fluorescence mode and turn-off 1O2 generation efficiency in our strategy successfully realized a diminished fluorescence cross-talk and oxidation quenching effect. It is adequately envisioned that our proposed strategy for monitoring biomarkers and prolonged tumor retention will contribute tremendous dedication in the clinical, diagnostic, and therapeutic fields.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Humanos , RNA Mitocondrial , Corantes Fluorescentes , Neoplasias Colorretais/diagnóstico por imagem , Imagem Óptica/métodos
10.
Fish Shellfish Immunol ; 143: 109230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977542

RESUMO

Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.


Assuntos
Metais Pesados , Sepia , Animais , Cobre/toxicidade , Cádmio/toxicidade , Sepia/metabolismo , Antioxidantes/metabolismo , Redes Reguladoras de Genes , Larva/genética , Larva/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Imunidade
11.
Int J Biol Sci ; 19(14): 4393-4410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781044

RESUMO

Akkermansia muciniphila (A. muciniphila), a gram-negative anaerobic bacterium, is selectively decreased in the fecal microbiota of patients with colorectal cancer (CRC), but its molecular mechanism in CRC development remains inconclusive. In this study, we first confirmed the inhibitory effect of A. muciniphila on CRC formation and analyzed the metabolic role of intestinal flora in human Polyps, A-CRA (advanced colorectal adenoma) and CRC samples. To better clarify the role of A. muciniphila in CRC development, a pseudo-germ-free (GF) azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established, followed by infection with or without A. muciniphila. Metabolomic analysis and RNA-seq analysis showed tryptophan-mediated aryl hydrocarbon receptor (AhR) was significantly down-regulated in A. muciniphila-infected CRC mice. Then, mice with intestinal specific AhR deficiency (AhRfl/fl Cre) were generated and were used in 2 murine models: AOM/DSS treatment as a model of carcinogen-induced colon cancer and a genetically induced model using ApcMin/+ mice. Notably, AhR deficiency inhibited CRC growth in the AOM/DSS and ApcMin/+ mouse model. Moreover, AhR deficiency inhibited, rather than enhanced, tumor formation and tumor-derived organoids in Apc-deficient cells both in vivo and in vitro by activating Wnt/ß-catenin signaling and TCF4/LEF1-dependent transcription. Furthermore, the antitumor effectiveness of A. muciniphila was abolished either in a human colon cancer tumor model induced by subcutaneous transplantation of AhR-silenced CRC cells, or AhR-deficienty spontaneous colorectal cancer model. In conclusion, supplementation with A. muciniphila. protected mice from CRC development by specifically inhibiting tryptophan-mediated AhR/ß-catenin signaling.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Triptofano/efeitos adversos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias Colorretais/metabolismo , Via de Sinalização Wnt , Camundongos Endogâmicos C57BL
12.
Nature ; 621(7980): 804-812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730988

RESUMO

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Assuntos
Craniossinostoses , Humanos , Camundongos , Animais , Craniossinostoses/genética , Osteogênese , Linhagem da Célula , Fenótipo , Células-Tronco
13.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
14.
Commun Chem ; 6(1): 146, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420027

RESUMO

Innovative modes of response can greatly push forward chemical sensing processes and subsequently improve sensing performance. Classical chemical sensing modes seldom involve the transition of a delicate molecular assembly during the response. Here, we display a sensing mode for polyamine detection based on an order-order transition of iron-sulfur complexes upon their assembly. Strong validation proves that the unique order-order transition of the assemblies is the driving force of the response, in which the polyamine captures the metal ion of the iron-sulfur complex, leading it to decompose into a metal-polyamine product, accompanied by an order-order transition of the assemblies. This mechanism makes the detection process more intuitive and selective, and remarkably improves the detection efficiency, achieving excellent polyamines specificity, second-level response, convenient visual detection, and good recyclability of the sensing system. Furthermore, this paper also provides opportunities for the further application of the iron-sulfur platform in environment-related fields.

15.
Anal Chem ; 95(27): 10390-10397, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358224

RESUMO

Oxidation and protein phosphorylation are critical mechanisms involved in regulating various cellular activities. Increasing research has suggested that oxidative stress could affect the activities of specific kinases or phosphatases, leading to alterations in the phosphorylation status of certain proteins. Ultimately, these alterations can affect cellular signaling pathways and gene expression patterns. However, the relationship between oxidation and protein phosphorylation remains complex and not yet fully understood. Therefore, the development of effective sensors capable of detecting both oxidation and protein phosphorylation simultaneously presents an ongoing challenge. To address this need, we introduce a proof-of-concept nanochannel device that is dual-responsive to both H2O2 and phosphorylated peptide (PP). Specifically, we design a peptide GGGCEG(GPGGA)4CEGRRRR, which contains an H2O2-sensitive unit CEG, an elastic peptide fragment (GPGGA)4, and a phosphorylation site recognition fragment RRRR. When the peptides are immobilized on the inner walls of conical nanochannels in a polyethylene terephthalate membrane, this peptide-modified nanochannel device exhibits a sensitive response to both H2O2 and PPs. The peptide chains undergo a random coil-to-α-helix transition in response to H2O2, which leads to a close-to-open transition of the nanochannel, accompanied with a remarkable increase in the transmembrane ionic current. In contrast, binding of the peptides with PPs shields the positive charge of the RRRR fragments, causing a decrease of the transmembrane ionic current. These unique features enable the sensitive detection of reactive oxygen species released by 3T3-L1 cells stimulated by platelet-derived growth factor (PDGF) as well as PDGF-induced change in the PP level. Real-time kinase activity monitoring further confirms the device's potential utility for kinase inhibitor screening.


Assuntos
Peróxido de Hidrogênio , Peptídeos , Peróxido de Hidrogênio/farmacologia , Peptídeos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fosforilação , Estresse Oxidativo
16.
Biosens Bioelectron ; 237: 115485, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348191

RESUMO

The photoconvertible fluorophore synthesis enables the light controlled imaging channels switch for accurate tracking the quantity and localization of intracellular biomolecules in chemical biology. Herein, we repurposed the photochemistry of Fischer's base and developed a sunlight-directed fluorophore-switch strategy for high-efficiency trimethine cyanine (Cy3.5/Cy3) synthesis. The unexpected sunlight-directed photoconversion of Fischer's base proceeds in conventional solvents and accelerates in chloroform via photo-oxidation and hydrogen atom transfer without using extra additives, and the heterogenous dimerization mechanism was proposed and confirmed by isolation of the reactive intermediates. The reliable strategy is employed in the photosynthesis of commercially available cytomembrane marker (DiI) and other cyanine based organelle markers with appreciable yields. Sunlight-controlled fluorophore-switch of subcellular organelle markers in living cells validated the feasibility of our strategy with cell-tolerant character. Moreover, remote control synthesis of Cy3.5 in vivo directed via sunlight further demonstrated the extended application of our strategy. Therefore, this sunlight-directed strategy will facilitate exploitation of cyanine-based probes with switched fluorescence imaging channels and further enable precise description of the dynamic variations in living cells with minimal autofluorescence and cellular disturbance.


Assuntos
Organelas , Luz Solar , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Organelas/química , Fotoquímica/métodos , Fotossíntese , Cianatos/química
17.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298950

RESUMO

In this study, GC-IMS was used to analyze the volatile component and flavor profiles of Crassostrea gigas individuals of different ploidy and gender. Principal component analysis was used to explore overall differences in flavor profiles, and a total of 54 volatile compounds were identified. The total volatile flavor contents in the edible parts of tetraploid oysters were significantly higher than in diploid and triploid oysters. The concentrations of ethyl (E)-2-butenoate and 1-penten-3-ol were significantly higher in triploid oysters than in diploid and tetraploid oysters. In addition, the volatile compounds propanoic acid, ethyl propanoate, 1-butanol, butanal, and 2-ethyl furan were significantly higher in females than in males. The volatile compounds p-methyl anisole, 3-octanone, 3-octanone, and (E)-2-heptenal were present in higher levels in male than in female oysters. Overall, different ploidy and gender of oysters are connected with different sensory characteristics, providing new insights for understanding the flavor characteristics of oysters.


Assuntos
Crassostrea , Compostos Orgânicos Voláteis , Animais , Masculino , Feminino , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Tetraploidia , Triploidia , Ploidias , Compostos Orgânicos Voláteis/análise
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(4): 473-477, 2023 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-37070317

RESUMO

Objective: To explore the effectiveness of lobulated pedicled rectus abdominis myocutaneous flap to repair huge chest wall defect. Methods: Between June 2021 and June 2022, 14 patients with huge chest wall defects were treated with radical resection of the lesion and lobulated pedicled rectus abdominis myocutaneous flap transplantation for reconstruction of chest wall defects. The patients included 5 males and 9 females with an average age of 44.2 years (range, 32-57 years). The size of skin and soft tissue defect ranged from 20 cm×16 cm to 22 cm×22 cm. The bilateral pedicled rectus abdominis myocutaneous flaps in size of 26 cm×8 cm to 35 cm×14 cm were prepaired and cut into two skin paddles with basically equal area according to the actual defect size of the chest wall. After the lobulated pedicled rectus abdominis myocutaneous flap was transferred to the defect, there were two reshaping methods. The first method was that the skin paddle at the lower position and opposite side was unchanged, and the skin paddle at the effected side was rotated by 90° (7 cases). The second method was that the two skin paddles were rotated 90° respectively (7 cases). The donor site was sutured directly. Results: All 14 flaps survived successfully and the wound healed by first intention. The incisions at donor site healed by first intention. All patients were followed up 6-12 months (mean, 8.7 months). The appearance and texture of the flaps were satisfactory. Only linear scar was left at the donor site, and the appearance and activity of the abdominal wall were not affected. No local recurrence was found in all tumor patients, and distant metastasis occurred in 2 breast cancer patients (1 liver metastasis and 1 lung metastasis). Conclusion: The lobulated pedicled rectus abdominis myocutaneous flap in repair of huge chest wall defect can ensure the safety of blood supply of the flap to the greatest extent, ensure the effective and full use of the flap tissue, and reduce postoperative complications.


Assuntos
Neoplasias da Mama , Retalho Miocutâneo , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Parede Torácica , Masculino , Feminino , Humanos , Adulto , Retalho Miocutâneo/cirurgia , Parede Torácica/cirurgia , Reto do Abdome/transplante , Transplante de Pele , Neoplasias da Mama/cirurgia , Lesões dos Tecidos Moles/cirurgia , Resultado do Tratamento
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(3): 336-342, 2023 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-36940993

RESUMO

Objective: To introduce the technique and clinical application of free lobed anteromedial thigh perforator flap. Methods: Between October 2017 and December 2021, 65 patients with buccal and oral cancer penetrating defects were planned to treat with free lobed anterolateral thigh flap transplantation, of which 15 cases were found that the sole anterolateral thigh perforator was actually a branch of the anteromedial thigh perforator, and then the free lobed anteromedial thigh perforator flap was harvested for repair. There were 12 males and 3 females with an average age of 34.6 years (range, 29-55 years). According to Union for International Cancer Control (UICC) TNM staging, there were 7 cases of T 4N 0M 0, 4 cases of T 4N 1M 0, 2 cases of T 3N 1M 0, and 2 cases of T 3N 2M 0. The disease duration was 1-10 months (mean, 6.3 months), and the area of secondary soft tissue defect left after radical resection of buccal and oral cancer was from 5 cm×4 cm to 10 cm×6 cm. The anterolateral thigh skin flap ranged from 5 cm×4 cm to 13 cm×6 cm, and the anteromedial thigh skin flap ranged from 5 cm×3 cm to 10 cm×6 cm. The free trilobed anteromedial thigh flap was prepared according to the actual branches of the main trunk of the anteromedial thigh perforator in 4 cases, and the vastus medialis muscle flap was used to fill the cavity defect of the floor of mouth in 7 cases. Among the 15 patients, the vessel pedicles of the anteromedial thigh perforators were derived from the main femoral artery and vein in 8 cases, from the main descending branch of the lateral femoral circumflex artery in 4 cases, and from the main lateral femoral circumflex artery in 3 cases. Results: Hematoma occurred in 2 cases after operation, which was successfully saved after emergency exploration. No vascular crisis occurred, and partial necrosis of anterolateral femoral skin island occurred in 1 case, which was healed with debridement. The remaining flaps survived successfully, and the wounds and donor site incisions healed by first intention. All the patients were followed up 12-36 months (mean, 14.6 months). The appearance of the flap was satisfactory, and no obvious swelling was found; the mouth opening and language function were satisfactory; only linear scar was left in the donor area, and the thigh function was not significantly affected. Local recurrence occurred in 3 cases, and the defect after tumor resection was repaired with pedicled pectoralis major myocutaneous flap. Four patients with neck lymph node metastasis, including ipsilateral side in 3 patients and contralateral side in the other 1 patient, all underwent neck lymph node dissection again. The 3-year survival rate was 86.7% (13/15). Conclusion: The anteromedial thigh perforator vessels distributed in the anterolateral region of the thigh can be used to prepare the anterolateral thigh split lobed flap to repair the buccal and oral cancer penetrating defects.


Assuntos
Neoplasias Bucais , Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Masculino , Feminino , Humanos , Adulto , Coxa da Perna/cirurgia , Transplante de Pele , Retalho Perfurante/irrigação sanguínea , Neoplasias Bucais/cirurgia , Artéria Femoral/cirurgia , Lesões dos Tecidos Moles/cirurgia , Resultado do Tratamento
20.
Dev Comp Immunol ; 143: 104677, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870582

RESUMO

Triploid oysters have provided the oyster industry with many benefits, such as fast growth rates, meat quality improvement, and increased oyster production and economic benefits, since the first report on triploid oysters was published. The development of polyploid technology has remarkably increased the output of triploid oysters to meet the increasing demand of consumers for Crassostrea gigas in the past decades. At present, research on triploid oyster has mainly focused on breeding and growth, but studies on the immunity of triploid oysters are limited. According to recent reports, Vibrio alginolyticus is a highly virulent strain that can cause disease and death in shellfish, shrimp, as well as serious economic losses. V. alginolyticus may be a reason why oysters die during summer. Therefore, using V. alginolyticus to explore the resistance and immune defense mechanisms of triploid oysters against pathogens presents practical significance. Transcriptome analysis of gene expression was performed in triploid C. gigas at 12 and 48 h after infection with V. alginolyticus, and the respective 2257 and 191 differentially expressed genes (DEGs) were identified. The results of GO and KEGG enrichment analyses showed that multiple significantly enriched GO terms and KEGG signaling pathways are associated with immunity. A protein-protein interaction network was constructed to investigate the interaction relationship of immune-related genes. Finally, we verified the expression situation of 16 key genes using quantitative RT-PCR. This study is the first to use the PPI network in exploring the immune defense mechanism of triploid C. gigas blood to fill the gap in the immune mechanism of triploid oysters and other mollusks, and provide valuable reference for future triploid farming and pathogen prevention and control.


Assuntos
Crassostrea , Vibrio , Animais , Crassostrea/genética , Vibrio alginolyticus , Mapas de Interação de Proteínas , Triploidia , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA