Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
World J Oncol ; 15(4): 527-542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993251

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.

2.
Zhen Ci Yan Jiu ; 49(7): 678-685, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020485

RESUMO

OBJECTIVES: To investigate the impact of combined treatment of colorectal cancer (CRC) with electroacupuncture (EA) and capeOX (combined administration of fluorouracil, oxaliplatin and capecitabine) on the tumor volume, weight, spleen coefficient, apoptosis and ferroptosis of tumor tissue, and liver and kidney functions in nude mice with CRC, so as to explore its mechanisms underlying inhibiting CRC and alleviating toxic reactions of capeOX. METHODS: Female Balb/c nude mice were randomly assigned to 3 groups:model, capeOX, and EA+capeOX, with 8 nude mice in each group. The CRC model was established by subcutaneous injection of colon cancer cells at the right inguinal region. Nude mice of the capeOX group received intraperitoneal injection of oxaliplatin for 1 day and gavage of capecitabine from day 2 to day 7. EA (1 mA, 2 Hz/100 Hz) was applied to bilateral "Zusanli" (ST36) for 20 min, once daily for 7 days. During the interven-tion, the tumor volume and weight were measured every day, and at the end of intervention, the weight of the tumor tissue and spleen were measured, with tumor volume difference and spleen coefficient calculated. The proportion of apoptotic cells was measured by flow cytometry, and the contents of serum malondialdehyde (MDA), alanine aninotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) were detected using ELISA. The expression level of glutathione peroxidase 4 (GPX4, a key regulator for ferroptosis) protein of the tumor tissue was determined using Western blot. RESULTS: Compared to the model group, both the capeOX group and EA+capeOX group showed a decrease in the tumor volume (on day 3 and 4 in the capeOX group, and from day 2 to 7 in the EA+capeOX group) and body weight (P<0.05, on day 3 to 7 in the EA+capeOX group and on day 2 to 7 in the capeOX group), being evidently lower in the tumor volume on day 7 in the EA+capeOX than in the capeOX group (P<0.05), and evidently higher in the body weight on day 6 and 7 in the EA+capeOX group than in the capeOX group (P<0.05). In comparison with the model group, the tumor volume difference, tumor weight and spleen coefficient in both capeOX and EA+capeOX groups were significantly decreased (P<0.05), and MDA content in EA+capeOX group was significantly decreased (P<0.05), while the contents of ALT, BUN and Cr in the capeOX group, the proportion of apoptotic cells in both capeOX and EA+capeOX groups, and the GPX4 expression level in the EA+capeOX group were all significantly increased (P<0.05). The tumor volume difference, tumor weight, and contents of MDA, ALT, AST, BUN and Cr in the EA+capeOX group were markedly lower than in the capeOX group (P<0.05), while the spleen coefficient, proportion of apoptotic cells and GPX4 expression level in the EA+capeOX group were markedly higher than those in the capeOX group (P<0.05). CONCLUSIONS: EA of ST36 can enhance the effect of capeOX in inhibiting colorectal cancer growth in nude mice with CRC, which may be related with its functions in promoting tumor cell apoptosis, inhibiting ferroptosis, and modulating immune tolerance. In addition, EA can lower the side effects of capeOX in hematopoietic and immune, liver, and kidney functions.


Assuntos
Pontos de Acupuntura , Apoptose , Neoplasias Colorretais , Eletroacupuntura , Ferroptose , Camundongos Endogâmicos BALB C , Camundongos Nus , Animais , Camundongos , Ferroptose/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
3.
Adv Sci (Weinh) ; : e2403592, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023171

RESUMO

Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.

4.
Cells ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891121

RESUMO

Hypertension induces cardiac fibrotic remodelling characterised by the phenotypic switching of cardiac fibroblasts (CFs) and collagen deposition. We tested the hypothesis that Wnt1-inducible signalling pathway protein-1 (WISP-1) promotes CFs' phenotypic switch, type I collagen synthesis, and in vivo fibrotic remodelling. The treatment of human CFs (HCFs, n = 16) with WISP-1 (500 ng/mL) induced a phenotypic switch (α-smooth muscle actin-positive) and type I procollagen cleavage to an intermediate form of collagen (pC-collagen) in conditioned media after 24h, facilitating collagen maturation. WISP-1-induced collagen processing was mediated by Akt phosphorylation via integrin ß1, and disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2). WISP-1 wild-type (WISP-1+/+) mice and WISP-1 knockout (WISP-1-/-) mice (n = 5-7) were subcutaneously infused with angiotensin II (AngII, 1000 ng/kg/min) for 28 days. Immunohistochemistry revealed the deletion of WISP-1 attenuated type I collagen deposition in the coronary artery perivascular area compared to WISP-1+/+ mice after a 28-day AngII infusion, and therefore, the deletion of WISP-1 attenuated AngII-induced cardiac fibrosis in vivo. Collectively, our findings demonstrated WISP-1 is a critical mediator in cardiac fibrotic remodelling, by promoting CFs' activation via the integrin ß1-Akt signalling pathway, and induced collagen processing and maturation via ADAMTS-2. Thereby, the modulation of WISP-1 levels could provide potential therapeutic targets in clinical treatment.


Assuntos
Proteínas de Sinalização Intercelular CCN , Fibroblastos , Fibrose , Miocárdio , Proteínas Proto-Oncogênicas , Animais , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Miocárdio/patologia , Miocárdio/metabolismo , Colágeno/metabolismo , Angiotensina II/farmacologia , Camundongos Knockout , Colágeno Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL
5.
CNS Neurosci Ther ; 30(6): e14802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887185

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS: T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS: TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION: TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.


Assuntos
Neoplasias Encefálicas , Colágeno Tipo VI , Terapia por Estimulação Elétrica , Glioblastoma , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Linhagem Celular Tumoral , Animais , Camundongos Nus , Camundongos
6.
Biomater Res ; 28: 0031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845842

RESUMO

The abdominal wall plays a crucial role in safeguarding the internal organs of the body, serving as an essential protective barrier. Defects in the abdominal wall are common due to surgery, infection, or trauma. Complex defects have limited self-healing capacity and require external intervention. Traditional treatments have drawbacks, and biomaterials have not fully achieved the desired outcomes. Hydrogel has emerged as a promising strategy that is extensively studied and applied in promoting tissue regeneration by filling or repairing damaged tissue due to its unique properties. This review summarizes the five prominent properties and advances in using hydrogels to enhance the healing and repair of abdominal wall defects: (a) good biocompatibility with host tissues that reduces adverse reactions and immune responses while supporting cell adhesion migration proliferation; (b) tunable mechanical properties matching those of the abdominal wall that adapt to normal movement deformations while reducing tissue stress, thereby influencing regulating cell behavior tissue regeneration; (c) drug carriers continuously delivering drugs and bioactive molecules to sites optimizing healing processes enhancing tissue regeneration; (d) promotion of cell interactions by simulating hydrated extracellular matrix environments, providing physical support, space, and cues for cell migration, adhesion, and proliferation; (e) easy manipulation and application in surgical procedures, allowing precise placement and close adhesion to the defective abdominal wall, providing mechanical support. Additionally, the advances of hydrogels for repairing defects in the abdominal wall are also mentioned. Finally, an overview is provided on the current obstacles and constraints faced by hydrogels, along with potential prospects in the repair of abdominal wall defects.

7.
ACS Appl Mater Interfaces ; 16(22): 28147-28161, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783481

RESUMO

Nonhealing infectious wounds, characterized by bacterial colonization, wound microenvironment destruction, and shape complexity, present an intractable problem in clinical practice. Inspired by LEGOs, building-block toys that can be assembled into desired shapes, we proposed the use of electrospray nano-micro composite sodium alginate (SA) microspheres with antibacterial and angiogenic properties to fill irregularly shaped wounds instantly. Specifically, porous poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) encapsulating basic fibroblast growth factor (bFGF) were produced by a water-in-oil-in-water double-emulsion method. Then, bFGF@MSs were blended with the SA solution containing ZIF-8 nanoparticles. The resultant solution was electrosprayed to obtain nano-micro composite microspheres (bFGF@MS/ZIF-8@SAMSs). The composite MSs' size could be regulated by PLGA MS mass proportion and electrospray voltage. Moreover, bFGF, a potent angiogenic agent, and ZIF-8, bactericidal nanoparticles, were found to release from bFGF@MS/ZIF-8@SAMSs in a controlled and sustainable manner, which promoted cell proliferation, migration, and tube formation and killed bacteria. Through experimentation on rat models, bFGF@MS/ZIF-8@SAMSs were revealed to adapt to wound shapes and accelerate infected wound healing because of the synergistic effects of antibacterial and angiogenic abilities. In summation, this study developed a feasible approach to prepare bioactive nano-micro MSs as building blocks that can fill irregularly shaped infected wounds and improve healing.


Assuntos
Alginatos , Antibacterianos , Fator 2 de Crescimento de Fibroblastos , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cicatrização , Alginatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Ratos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Masculino , Escherichia coli/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Testes de Sensibilidade Microbiana , Proliferação de Células/efeitos dos fármacos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia
8.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730470

RESUMO

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Monócitos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Monócitos/metabolismo , Camundongos , Humanos , Peptídeos beta-Amiloides/metabolismo , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Idoso , Cistatinas/metabolismo , Cistatinas/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Idoso de 80 Anos ou mais , Camundongos Endogâmicos C57BL
9.
World J Gastrointest Surg ; 16(4): 1195-1202, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690044

RESUMO

BACKGROUND: Percutaneous transhepatic stent placement has become a common strategy for the postoperative treatment of portal vein (PV)/superior mesenteric veins (SMV) stenosis/occlusion. It has been widely used after liver transplantation surgery; however, reports on stent placement for acute PV/SMV stenosis after pancreatic surgery within postoperative 3 d are rare. CASE SUMMARY: Herein, we reported a case of intestinal edema and SMV stenosis 2 d after pancreatic surgery. The patient was successfully treated using stent grafts. Although the stenosis resolved after stent placement, complications, including bleeding, pancreatic fistula, bile leakage, and infection, made the treatment highly challenging. The use of anticoagulants was adjusted multiple times to prevent venous thromboembolism and the risk of bleeding. After careful treatment, the patient stabilized, and stent placement effectively managed postoperative PV/SMV stenosis. CONCLUSION: Stent placement is effective and feasible for treating acute PV/SMV stenosis after pancreatic surgery even within postoperative 3 d.

10.
Sci Rep ; 14(1): 12143, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802677

RESUMO

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Assuntos
Glucose , Glicólise , Lipopolissacarídeos , Microglia , RNA Longo não Codificante , Microglia/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glucose/metabolismo , Camundongos , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/genética , Interferon gama/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Linhagem Celular , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/genética , Desoxiglucose/farmacologia , Interleucina-4/metabolismo , Interleucina-1beta/metabolismo , Reprogramação Metabólica , Arginase , Hexoquinase , Lectinas
11.
Therap Adv Gastroenterol ; 17: 17562848241249387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757097

RESUMO

Background: The significance of Kirsten rat sarcoma viral oncogene (KRAS) mutation in colorectal cancer (CRC) is well established; yet, its association with KRAS expression and prognosis warrants further investigation. While high KRAS expression is commonly linked with poorer prognosis in other cancers, its role in CRC remains relatively understudied. Objective: To explore the correlation between KRAS expression, KRAS status, prognosis, and tumor-infiltrating T lymphocyte density in CRC. Design: Single-center retrospective study. Methods: Conducted between 2010 and 2020, this study utilized tumor samples to assess KRAS expression and quantify CD3+/CD8+ T lymphocytes. The Cox proportional hazards model and linear regression analysis were employed to examine the relationship between KRAS expression, prognosis, and tumor-infiltrating T lymphocytes. Results: This study included 265 CRC patients who underwent radical surgery. No significant association was observed between KRAS expression and KRAS status (p > 0.05). High KRAS expression was associated with poorer overall survival and disease-free survival (p < 0.05). Subgroup analysis revealed that high KRAS expression remained indicative of a worse prognosis in the group with mismatch repair-deficient (dMMR) and KRAS mutant type (p < 0.05). Multivariate analysis confirmed KRAS expression as an unfavorable prognostic factor (p < 0.05). However, the significance of KRAS expression was lost in the dMMR and KRAS mutant-type group regarding overall survival (p > 0.05). Notably, KRAS expression showed a negative correlation with the density of CD8+ T lymphocytes in tumor tissue (p < 0.05), a finding also observed in the dMMR group (p < 0.05). Conclusion: No association was found between KRAS expression and KRAS mutation status in CRC. Higher KRAS expression was indicative of poorer prognosis for CRC patients, except for those with proficient mismatch repair and KRAS wild type. In addition, in patients with dMMR, KRAS expression was associated with a lower density of CD8+ T lymphocytes in tumor tissue.


Exploring the link between KRAS gene expression and outcomes in colorectal cancer patients: impact on survival, mutation status, and T lymphocyte levels 1. KRAS gene: A gene that, when mutated, can lead to the development and growth of colorectal cancer. The KRAS gene is part of a family of genes that help control cell growth and death. 2. T lymphocytes: A type of immune cell that plays a crucial role in the body's defense against infections and cancer. They can identify and kill cancer cells. 3. The study found that the level of activity of the KRAS gene in colorectal cancer patients did not change based on whether the KRAS gene was mutated or what type of mutation it had. 4. For patients with a specific type of colorectal cancer (dMMR) and those with mutations in the KRAS gene, high levels of KRAS gene activity were linked to a poorer outlook. Essentially, these patients had a harder time fighting the disease, and KRAS gene activity served as a warning sign for more challenging outcomes. 5. In patients with dMMR colorectal cancer, higher KRAS gene activity was associated with fewer CD8+ T lymphocytes in the tumor. CD8+ T lymphocytes are crucial immune cells that help fight cancer by attacking cancer cells. This means that in these patients, the body's natural defense against the tumor was weaker.

12.
BMC Gastroenterol ; 24(1): 176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773485

RESUMO

BACKGROUND: Angiogenesis is a critical step in colorectal cancer growth, progression and metastasization. CT are routine imaging examinations for preoperative clinical evaluation in colorectal cancer patients. This study aimed to investigate the predictive value of preoperative CT enhancement rate (CER) and CT perfusion parameters on angiogenesis in colorectal cancer, as well as the association of preoperative CER and CT perfusion parameters with serum markers. METHODS: This retrospective analysis included 42 patients with colorectal adenocarcinoma. Median of microvessel density (MVD) as the cut-off value, it divided 42 patients into high-density group (MVD ≥ 35/field, n = 24) and low-density group (MVD < 35/field, n = 18), and 25 patients with benign colorectal lesions were collected as the control group. Statistical analysis of CER, CT perfusion parameters, serum markers were performed in all groups. Receiver operating curves (ROC) were plotted to evaluate the diagnostic efficacy of relevant CT perfusion parameters for tumor angiogenesis; Pearson correlation analysis explored potential association between CER, CT perfusion parameters and serum markers. RESULTS: CER, blood volume (BV), blood flow (BF), permeability surface (PS) and carbohydrate antigen 19 - 9 (CA19-9), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), trefoil factor 3 (TFF3), vascular endothelial growth factor (VEGF) in colorectal adenocarcinoma were significantly higher than those in the control group, the parameters in high-density group were significantly higher than those in the low-density group (P < 0.05); however, the time to peak (TTP) of patients in colorectal adenocarcinoma were significantly lower than those in the control group, and the high-density group showed a significantly lower level compared to the low-density group (P < 0.05). The combined parameters BF + TTP + PS and BV + BF + TTP + PS demonstrated the highest area under the curve (AUC), both at 0.991. Pearson correlation analysis showed that the serum levels of CA19-9, CA125, CEA, TFF3, and VEGF in patients showed positive correlations with CER, BV, BF, and PS (P < 0.05), while these indicators exhibited negative correlations with TTP (P < 0.05). CONCLUSIONS: Some single and joint preoperative CT perfusion parameters can accurately predict tumor angiogenesis in colorectal adenocarcinoma. Preoperative CER and CT perfusion parameters have certain association with serum markers.


Assuntos
Adenocarcinoma , Antígeno Carcinoembrionário , Neoplasias Colorretais , Neovascularização Patológica , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Colorretais/irrigação sanguínea , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/sangue , Adenocarcinoma/patologia , Adenocarcinoma/irrigação sanguínea , Idoso , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/sangue , Tomografia Computadorizada por Raios X/métodos , Antígeno Carcinoembrionário/sangue , Biomarcadores Tumorais/sangue , Adulto , Densidade Microvascular , Antígeno CA-19-9/sangue , Curva ROC , Fator A de Crescimento do Endotélio Vascular/sangue , Volume Sanguíneo , Cuidados Pré-Operatórios/métodos
13.
World J Gastrointest Surg ; 16(5): 1291-1300, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817277

RESUMO

BACKGROUND: The prognostic nutritional index (PNI), a marker of immune-nutrition balance, has predictive value for the survival and prognosis of patients with various cancers. AIM: To explore the clinical significance of the preoperative PNI on the prognosis of ampullary adenocarcinoma (AC) patients who underwent curative pancreaticoduodenectomy. METHODS: The data concerning 233 patients diagnosed with ACs were extracted and analyzed at our institution from January 1998 to December 2020. All patients were categorized into low and high PNI groups based on the cutoff value determined by receiver operating characteristic curve analysis. We compared disease-free survival (DFS) and overall survival (OS) between these groups and assessed prognostic factors through univariate and multivariate analyses. RESULTS: The optimal cutoff value for the PNI was established at 45.3. Patients with a PNI ≥ 45.3 were categorized into the PNI-high group, while those with a PNI < 45.3 were assigned to the PNI-low group. Patients within the PNI-low group tended to be of advanced age and exhibited higher levels of aspartate transaminase and total bilirubin and a lower creatinine level than were those in the PNI-high group. The 5-year OS rates for patients with a PNI ≥ 45.3 and a PNI < 45.3 were 61.8% and 43.4%, respectively, while the 5-year DFS rates were 53.5% and 38.3%, respectively. Patients in the PNI- low group had shorter OS (P = 0.006) and DFS (P = 0.012). In addition, multivariate analysis revealed that the PNI, pathological T stage and pathological N stage were found to be independent prognostic factors for both OS and DFS. CONCLUSION: The PNI is a straightforward and valuable marker for predicting long-term survival after pancreatoduodenectomy. The PNI should be incorporated into the standard assessment of patients with AC.

14.
Cell Oncol (Dordr) ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536650

RESUMO

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.

15.
Sci Total Environ ; 927: 171919, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554963

RESUMO

The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.


Assuntos
Acidithiobacillus , Ferro , Oxirredução , Propionatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efeitos dos fármacos , Ferro/metabolismo , Mineração , Formiatos/metabolismo , Ácido Acético/metabolismo
16.
Front Immunol ; 15: 1368203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545108

RESUMO

Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.


Assuntos
Células Espumosas , Traumatismos da Medula Espinal , Humanos , Células Espumosas/patologia , Traumatismos da Medula Espinal/metabolismo , Macrófagos/metabolismo , Sistema Nervoso Central/metabolismo
17.
Ann Hematol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448788

RESUMO

Waldenström macroglobulinemia (WM) is a type of B-cell lymphoma that produces IgM. Our study aimed to investigate the role of CXCL13, a chemokine essential for B lymphocytes, in the evaluation of treatment response and prognosis in WM. We collected serum samples and clinical data from 72 WM patients, with 69 patients receiving systemic therapy and 3 patients opting not to receive treatment. Serum CXCL13 levels at baseline and after six months of treatments were measured by enzyme-linked immunosorbent assay. The median serum level of CXCL13 was 1 539.2 pg/ml (range 10.0-21 389.9) at baseline and significantly decreased to 123.1 pg/ml (range 0.0-6 741.5) after 6 months of treatments. At baseline, higher CXCL13 levels were associated with lower hemoglobin levels (p = 0.001), higher ß2-microglobulin levels (p = 0.001), lower albumin levels (p = 0.046), and higher IPSS-WM scores (p = 0.013). After 6 months of treatment, patients who achieved PR/VGPR had significantly lower CXCL13 levels compared to those with SD (70.2 pg/ml vs 798.6 pg/ml, p = 0.002). The median follow-up period was 40 months (range 4.2-188). Eight patients died during the follow-up period. Overall survival differed based on CXCL13 levels. When grouped by baseline CXCL13 levels, the median OS was 60.0 months in patients with serum CXCL13 > 2 000 pg/ml, while it was not reached in patients with low CXCL13 levels (p < 0.001). Based on CXCL13 levels after the treatments, the median OS was 74.0 months in patients with serum CXCL13 > 200 pg/ml, while it was not reached in patients with CXCL13 ≤ 200 pg/ml. In a subgroup of 28 patients with a series of serum samples, the increase of serum CXCL13 level was associated with disease progression or the start of next-line therapy (p < 0.001). Our study concludes that serum CXCL13 levels decrease in WM patients treated with various regimens and correlate with treatment response. Detecting serum CXCL13 at baseline or after treatment help in predicting prognosis.

18.
iScience ; 27(4): 109358, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544565

RESUMO

Mesenchymal stem cell (MSC)-mediated coupling of osteogenesis and angiogenesis is a critical phenomenon in bone formation. Herein, we investigated the role and mechanism of SGMS1 in the osteogenic differentiation of MSCs and, in combination with osteogenesis and angiogenesis, to discover new therapeutic targets for skeletal dysplasia and bone defects. SGMS1 addition accelerated MSC osteogenic differentiation, whereas SGMS1 silencing suppressed this process. Moreover, SGMS1 overexpression inhibited ceramide (Cer) and promoted sphingomyelin (SM) levels. SM treatment neutralized the suppressive effect of shSGMS1 on osteogenesis. SGMS1 restrained PP2A activity by regulating Cer/SM metabolism and thus enhanced the levels of phosphorylated Akt, Runx2, and vascular endothelial growth factor (VEGF). Furthermore, SGMS1 transcription was regulated by Runx2. SGMS1 increased MSC-mediated angiogenesis by promoting VEGF expression. SGMS1 addition promoted rat bone regeneration in vivo. In conclusion, SGMS1 induces osteogenic differentiation of MSCs and osteogenic-angiogenic coupling through the regulation of the Cer/PP2A/Akt signaling pathway.

19.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38400122

RESUMO

H5N1 highly pathogenic avian influenza virus (HPAIV) infections pose a significant threat to human health, with a mortality rate of around 50%. Limited global approval of H5N1 HPAIV vaccines, excluding China, prompted the need to address safety concerns related to MDCK cell tumorigenicity. Our objective was to improve vaccine safety by minimizing residual DNA and host cell protein (HCP). We developed a downstream processing method for the cell-based H5N1 HPAIV vaccine, employing CaptoTM Core 700, a multimodal resin, for polishing. Hydrophobic-interaction chromatography (HIC) with polypropylene glycol as a functional group facilitated the reversible binding of virus particles for capture. Following the two-step chromatographic process, virus recovery reached 68.16%. Additionally, HCP and DNA levels were reduced to 2112.60 ng/mL and 6.4 ng/mL, respectively. Western blot, high-performance liquid chromatography (HPLC), and transmission electron microscopy (TEM) confirmed the presence of the required antigen with a spherical shape and appropriate particle size. Overall, our presented two-step downstream process demonstrates potential as an efficient and cost-effective platform technology for cell-based influenza (H5N1 HPAIV) vaccines.

20.
Crit Rev Anal Chem ; : 1-21, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366356

RESUMO

Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA