Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 6: e4551, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607263

RESUMO

Prolonged life expectancy in humans has been accompanied by an increase in the prevalence of cancers. Breast cancer (BC) is the leading cause of cancer-related deaths. It accounts for one-fourth of all diagnosed cancers and affects one in eight females worldwide. Given the high BC prevalence, there is a practical need for demographic screening of the disease. In the present study, we re-analyzed a large microRNA (miRNA) expression dataset (GSE73002), with the goal of optimizing miRNA biomarker selection using neural network cascade (NNC) modeling. Our results identified numerous candidate miRNA biomarkers that are technically suitable for BC detection. We combined three miRNAs (miR-1246, miR-6756-5p, and miR-8073) into a single panel to generate an NNC model, which successfully detected BC with 97.1% accuracy in an independent validation cohort comprising 429 BC patients and 895 healthy controls. In contrast, at least seven miRNAs were merged in a multiple linear regression model to obtain equivalent diagnostic performance (96.4% accuracy in the independent validation set). Our findings suggested that suitable modeling can effectively reduce the number of miRNAs required in a biomarker panel without compromising prediction accuracy, thereby increasing the technical possibility of early detection of BC.

2.
Oncotarget ; 8(60): 102212-102222, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254237

RESUMO

Globally, ovarian cancer (OC) is the leading cause of gynecological cancer-associated deaths. Metastasis, especially multi-organ metastasis, determines the speed of disease progression. A multicenter retrospective study was performed to identify the factors that drive metastasis, from medical records of 534 patients with OC. The average number of target organs per patient was 3.66, indicating multi-organ metastasis. The most common sites of metastasis were large intestine and greater omentum, which were prone to co-metastasis. Results indicated that ascites and laterality, rather than age and menopausal status, were the potential drivers for multi-organ metastasis. Cancer antigen (CA) 125 (CA-125) and nine other blood indicators were found to show a significant, but weak correlation with multi-organ metastasis. A neural network cascade-multiple linear regression hybrid model was built to create an ovarian cancer metastasis index (OCMI) by integration of six multi-organ metastasis drivers including CA-125, blood platelet count, lymphocytes percentage, prealbumin, ascites, and laterality. In an independent set of 267 OC medical records, OCMI showed a moderate correlation with multi-organ metastasis (Spearman ρ = 0.67), the value being 0.72 in premenopausal patients, and good performance in identifying multi-organ metastasis (area under the receiver operating characteristic curve = 0.832), implying a potential prognostic marker for OC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA