Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Apoptosis ; 28(3-4): 627-638, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719469

RESUMO

Recent evidence have indicated that ferroptosis, a novel iron-dependent form of non-apoptotic cell death, plays a critical role in human cancers. Besides, emerging literatures have revealed the ovel function of N6-methyladenosine (m6A) in bladder cancer physiological. However, the underlying mechanism of m6A on bladder cancer is still unclear. Here, present work revealed that m6A methyltransferase ('writer') WTAP up-regulated in bladder cancer tissue and cells, indicating the poor prognosis of bladder cancer patients. Functionally, gain/loss-of-functional experiments illustrated that WTAP promoted the viability of bladder cancer cells and inhibited the erastin-induced ferroptosis. Mechanistically, there was a remarkable m6A modification site on 3'-UTR of endogenous antioxidant factor NRF2 RNA and WTAP could install its methylation. Moreover, m6A reader YTHDF1 recognized the m6A site on NRF2 mRNA and enhanced its mRNA stability. Therefore, these findings demonstrated potential therapeutic strategyies for bladder cancer via m6A-dependent manner.


Assuntos
Ferroptose , Neoplasias da Bexiga Urinária , Humanos , Regiões 3' não Traduzidas , Apoptose , Proteínas de Ciclo Celular , Ferroptose/genética , Fator 2 Relacionado a NF-E2/genética , Fatores de Processamento de RNA , Neoplasias da Bexiga Urinária/genética
2.
Langmuir ; 38(30): 9166-9185, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852171

RESUMO

In this paper, the microscopic mechanisms and macroscopic characteristics of polymer/nanoparticle foam flooding in a heavy oil reservoir environment were studied. Sodium dodecyl sulfate (SDS) surfactant was used as the foaming agent, and the foam was prepared by a combination of partially hydrolyzed polyacrylamide (HPAM) polymer and SiO2 nanoparticles. By performing experiments with the microscopic model, the foam flooding dynamics in the heavy oil reservoir were simulated. Based on the experiments, the formula model was established to evaluate the physicochemical effects between the foam liquid film and oil surface. Finally, the macroscopic characteristics of foam flooding were studied by performing oil displacement experiments with a 2D visual model. The microscopic experiments demonstrated that the foam liquid film could exert multiple actions, such as adsorption, stretching, and cutting on the heavy oil in the reservoir pores. These actions were accompanied by force changes between the foam and heavy oil, and the addition of polymer and nanoparticles further strengthened them. The calculations of the formula model indicated that the polymer and nanoparticles amplified the force between the foam liquid film and heavy oil by 1.95 and 2.2 times, respectively. The 2D visual model experiments suggested that foam flooding could further develop heavy oil after water flooding through its liquid film effects, and the oil recovery efficiency increased from 42.43 to 57.82%. In addition, the polymer and nanoparticles further optimized the oil displacement effect of the foam liquid film, which made the oil recovery efficiency reach 64.77-68.16%.

3.
Front Cardiovasc Med ; 9: 840337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360035

RESUMO

PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5'-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid-Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.

4.
Toxicol In Vitro ; 77: 105233, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390763

RESUMO

The awareness of the long-term toxicities of cancer survivors after chemotherapy treatment has been gradually strengthened as the population of cancer survivors grows. Generally, chemotherapy-induced peripheral neurotoxicity (CIPN) is studied by animal models which are not only expensive and time-consuming, but also species-specific differences. The generation of human induced pluripotent stem cells (hiPSCs) and differentiation of peripheral neurons have provided an in vitro model to elucidate the risk of CIPN. Here, we developed a drug-induced peripheral neurotoxicity model using hiPSC-derived peripheral neurons (hiPSC-PNs) to study the mechanisms of different chemotherapeutic agents on neuronal viability using LDH assay, a cell apoptosis assay determined by caspase 3/7 activation, neurite outgrowth, ion channel expression and neurotransmitter release following treatment of cisplatin, bortezomib, ixabepilone, or pomalidomide. Our data showed that the multiple endpoints of the hiPSC-PNs model had different sensitivity to various chemotherapeutic agents. Furthermore, the chemotherapeutics separated cell viability from the decrease in neurite lengthand changed levels of ion channels and neurotransmitters to a certain extent. Thus, we study the mechanisms of peripheral neurotoxicity induced by chemotherapeutic agents through changes in these indicators.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Reação em Cadeia da Polimerase em Tempo Real
5.
Langmuir ; 36(48): 14748-14762, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33213147

RESUMO

This paper combined experiments with a theoretical model to simulate the behavior between a foam and heavy oil during contact pressing, separation, and adsorption. We discuss the changes in the elasticity and adsorption forces during the pressing and adsorption of the two fluids. The influence of the changes in temperature and pressure, the concentration of the sodium dodecyl sulfate surfactant, the heavy oil viscosity, and the addition of partially hydrolyzed polyacrylamide and hydrophobic SiO2 nanoparticles was studied. The results showed that the overall increase in the elasticity and adsorption forces between the foam at 1 wt % surfactant and heavy oil was more than 2 times greater than those of the foam with 0.2 wt % surfactant. The increase in viscosity of heavy oil also increased various forces. The overall improvement in the adsorption force between fluids caused by nanoparticles during separation and adsorption stages reached 1.8 times, which was better than that obtained using the polymer (1.65 times). However, the polymer showed a 1.4 times higher elastic force during the fluid pressing stage than the nanoparticles and about 4 times higher than the control foam, and the increase in temperature greatly weakened the effect of the force, while the change in pressure did not cause much impact. An analytical model was built based on fluid mechanics, and the calculation results were consistent with the experimental data with an error of about 5-12%, suggesting that this model provides a good reference value.

6.
Polymers (Basel) ; 12(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046274

RESUMO

Poor interfacial bonding between stainless steel wire and the inner and outer layer resin matrix significantly affects the mechanical performance of braid-reinforced composite hollow fiber tube, especially torsion control. In this work, a coating of thermoplastic polyurethane (TPU) deposited on the surface of stainless steel wire greatly enhanced the mechanical performance of braid-reinforced composite hollow fiber tube. This method takes advantage of the hydrogen bonding between polyether block amide (PEBA) and thermoplastic polyurethane (TPU) for surface modification of stainless steel wire, as well as the good compatibility between PEBA and TPU. The mechanical properties of composited tubes demonstrate that the interlaminar shear strength, modulus of elasticity, and torque transmission properties were enhanced by 27.8%, 42.1%, and 41.4%, respectively. The results indicating that the interfacial adhesion between the coated stainless steel wire and the inner and outer matrix was improved. In addition, the interfacial properties of composite hollow fiber tube before and after coating was characterized by the optical microscope, and results show that the interfacial adhesion properties of the modified stainless steel wire reinforced resin matrix composites were greatly improved.

7.
Cell Discov ; 4: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423272

RESUMO

Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.

8.
Clin Exp Pharmacol Physiol ; 45(6): 573-580, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29164657

RESUMO

Some studies have revealed that nicotine can damage the male reproductive system through various means including oxidative stress, which is a primary factor in the pathogenesis of male infertility. The strong anti-oxidative capacity of resveratrol has been demonstrated previously, but its role in the context of male reproduction remains inconclusive. To explore the biological role of resveratrol in protecting male reproductive function and the potential underlying mechanism, nicotine-induced Leydig cells were used as a cell model of oxidative damage. The data showed that resveratrol treatment increased cell viability, SOD activity and anti-apoptotic activity in nicotine-stressed Leydig cells. This effect was accompanied by the upregulation of autophagy, which was illustrated by MDC-LysoTracker red staining. Moreover, pretreating with 3-methyladenine (3-MA), an autophagy inhibitor, attenuated resveratrol-induced Leydig cells autophagy and promoted apoptosis. Apart from this, resveratrol enhanced AMPK phosphorylation but reduced mTOR phosphorylation. Subsequently, upon inhibiting AMPK phosphorylation by AMPK inhibitors, Leydig cell autophagy induced by resveratrol was obviously abolished. In conclusion, resveratrol may exert its cytoprotective role against oxidative injury by the activation of autophagy via AMPK/mTOR pathway.


Assuntos
Autofagia/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Nicotina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Blood ; 131(3): 328-341, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29113963

RESUMO

Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.


Assuntos
Mutação com Ganho de Função/genética , Leucemia Mieloide/genética , Proteínas Repressoras/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Fatores de Transcrição/metabolismo
10.
Sci Rep ; 7(1): 15695, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146917

RESUMO

In the present work, the potential of N2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N2 huff and puff has been found to increase as the N2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

11.
Nat Commun ; 8: 15456, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593990

RESUMO

ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2-/- mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HSCs) and granulocyte-macrophage progenitors compared with wild-type controls. Recipients transplanted with Asxl2-/- and Asxl2+/- BM cells have shortened lifespan due to the development of MDS-like disease or myeloid leukaemia. Paired daughter cell assays demonstrate that Asxl2 loss enhances the self-renewal of HSCs. Deletion of Asxl2 alters the expression of genes critical for HSC self-renewal, differentiation and apoptosis in Lin-cKit+ cells. The altered gene expression is associated with dysregulated H3K27ac and H3K4me1/2. Our study demonstrates that ASXL2 functions as a tumour suppressor to maintain normal HSC function.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Células Mieloides/metabolismo , Proteínas Repressoras/deficiência , Animais , Linhagem da Célula , Autorrenovação Celular , Progressão da Doença , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Lisina/metabolismo , Camundongos , Síndromes Mielodisplásicas/genética , Células Mieloides/patologia , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Transcrição Gênica
12.
Mol Cancer Res ; 15(4): 418-428, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28087741

RESUMO

14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2-M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2-M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2-M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ-mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2-M arrest following IR was due to 14-3-3σ-induced Chk2 expression.Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers. Mol Cancer Res; 15(4); 418-28. ©2017 AACR.


Assuntos
Proteínas 14-3-3/genética , Biomarcadores Tumorais/genética , Quinase do Ponto de Checagem 2/genética , Resistencia a Medicamentos Antineoplásicos , Exorribonucleases/genética , Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1/genética , Tolerância a Radiação , Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA por Junção de Extremidades , Exorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Regulação para Cima
13.
Sci Adv ; 3(1): e1601602, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116354

RESUMO

ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Regulação da Expressão Gênica/fisiologia , Hematopoese/fisiologia , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Repressoras/genética , Telófase/fisiologia , Coesinas
14.
Stem Cell Reports ; 6(6): 914-925, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27237378

RESUMO

De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.


Assuntos
Adipócitos/metabolismo , Células da Medula Óssea/metabolismo , Craniossinostoses/genética , Deficiência Intelectual/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteínas Repressoras/genética , Adipócitos/patologia , Animais , Células da Medula Óssea/patologia , Diferenciação Celular , Proliferação de Células , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Modelos Animais de Doenças , Expressão Gênica , Teste de Complementação Genética , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Cultura Primária de Células , Proteínas Repressoras/deficiência , Análise de Sequência de RNA , Transdução Genética
15.
J Bone Miner Res ; 30(10): 1840-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25917016

RESUMO

Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.


Assuntos
Haploinsuficiência , Células Progenitoras Mieloides , Neurofibromina 1 , Osteoclastos , Osteólise , Osteoporose , Animais , Humanos , Camundongos , Camundongos Transgênicos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/genética , Osteólise/metabolismo , Osteólise/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transativadores/genética , Transativadores/metabolismo
16.
Blood ; 123(4): 541-53, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24255920

RESUMO

ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.


Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Animais , Apoptose , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Cruzamentos Genéticos , Modelos Animais de Doenças , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Homeostase , Homozigoto , Humanos , Camundongos , Camundongos Transgênicos , Mitose , Síndromes Mielodisplásicas/metabolismo , Fenótipo
17.
J Biol Chem ; 288(44): 31447-57, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043626

RESUMO

Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the "undruggable" oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu(12) and Tyr(84) play important roles in 14-3-3σ dimerization, the non-core residue Phe(25) appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val(81)) is less important than Phe(25) in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu(12), Phe(25), or Tyr(84) dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.


Assuntos
Proteínas 14-3-3/metabolismo , Resistência a Medicamentos/fisiologia , Multimerização Proteica/fisiologia , Tolerância a Radiação/fisiologia , Proteínas 14-3-3/genética , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Dano ao DNA , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Fase G1/efeitos da radiação , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
18.
J Proteome Res ; 11(2): 1364-72, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22188235

RESUMO

Human ABCC1 is a member of the ATP-binding cassette (ABC) transporter superfamily, and its overexpression has been shown to cause multidrug resistance by active efflux of a wide variety of anticancer drugs. ABCC1 has been shown to exist and possibly function as a homodimer. However, a possible heterocomplex involving ABCC1 has been indicated. In this study, we performed an interactive proteomics study to examine proteins that bind to and form heterocomplexes with ABCC1 using coimmunoprecipitation and tandem mass spectrometry (MS/MS) analyses. We found that ATP synthase α binds to ABCC1 in plasma membranes with a ratio of 2:1. The ATP synthase α binding site in ABCC1 is located in the linker domain at the carboxyl core of ABCC1, and phosphorylation of the linker domain at the protein kinase A site enhances ATP synthase α binding. The interaction between ABCC1 and ATP synthase α in a heterocomplex may indicate a novel function of ABCC1 in regulating extracellular ATP level and purinergic signaling cascade.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células HEK293 , Humanos , Imunoprecipitação , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
19.
J Chem Inf Model ; 51(10): 2612-25, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21870863

RESUMO

Many proteins exist and function as oligomers. While hydrophobic interactions have been recognized as the major driving force for oligomerization, detailed molecular mechanisms for the assembly are unknown. Here, we used 14-3-3σ as a model protein and investigated the role of hydrophobic residues at the dimeric interface using MD simulations and coimmunoprecipitations. We found that a half-exposed and half-buried residue in the interface, Phe(25), plays a more important role in promoting homodimerization than the hydrophobic core residues by organizing both favorable hydrophobic and hydrophilic interactions. Phe(25) is critical in packing and stabilizing hydrophobic core residues. We conclude that the structural stability of hydrophobic cores is critical for a stable homodimer complex and this stable property can be bestowed by residues outside of hydrophobic core. The important organizing activity of Phe(25) for homodimerization of 14-3-3σ originates from its unique physical location, rigidity, size, and hydrophobicity. Thus, hydrophobic residues that are not deeply buried at the oligomeric interface may play important but different roles from the buried core residues and they may promote oligomerization by organizing co-operativity of core and other residues for favorable hydrophobic and electrostatic interactions.


Assuntos
Proteínas 14-3-3/química , Biomarcadores Tumorais/química , Exonucleases/química , Simulação de Dinâmica Molecular , Fenilalanina , Multimerização Proteica , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cristalografia por Raios X , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Mutação , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Água/química
20.
Int J Biochem Mol Biol ; 2(1): 89-98, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21331354

RESUMO

Human fatty acid synthase (FASN) is a homo-dimeric protein with multi-enzymatic activity responsible for the synthesis of palmitate. FASN expression has been found to be up-regulated in multiple types of human cancers and its expression correlates with poor prognosis possibly by causing treatment resistance. In this study, we tested if FASN expression is up-regulated in human pancreatic cancers and if its higher expression level in pancreatic cancers causes intrinsic resistance to gemcitabine and radiation. We found that FASN expression is significantly up-regulated in human pancreatic cancer tissues without any correlation to age, sex, race, and tumor stage. Knocking down or over-expressing FASN significantly down- or up-regulate resistance of pancreatic cancer cell lines to both gemcitabine and radiation treatments. These findings imply that the elevated FASN expression in pancreatic cancers may contribute to unsuccessful treatments of pancreatic cancers by causing intrinsic resistance to both chemotherapy and radiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA