RESUMO
The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. Dor ablation in mice of both sexes results in defective myelinogenesis and remyelination. Genomic occupancy in oligodendrocytes and transcriptome profiling of the optic nerves of wild-type and Dor conditional knockout mice reveal that DOR and SOX10 co-occupy enhancers of critical myelinogenesis-associated genes including Prr18, encoding an oligodendrocyte-enriched, proline-rich factor. We show that DOR targets regulatory elements of genes responsible for α-ketoglutarate biosynthesis in mature oligodendrocytes and is essential for α-ketoglutarate production and lipid biosynthesis. Supplementation with α-ketoglutarate restores oligodendrocyte-maturation defects in Dor-deficient adult mice and improves remyelination after lysolecithin-induced demyelination and cognitive function in 17-month-old wild-type mice. Our data suggest that activation of α-ketoglutarate metabolism in mature oligodendrocytes can promote myelin production during demyelination and aging.
RESUMO
BACKGROUND: Toxoplasma gondii infection causes adverse pregnancy outcomes by affecting the expression of immunotolerant molecules in decidual immune cells. Galectin-9 (Gal-9) is widely expressed in decidual macrophages (dMφ) and is crucial for maintaining normal pregnancy by interacting with the immunomodulatory protein T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3). However, the effects of T. gondii infection on Gal-9 expression in dMφ, and the impact of altered Gal-9 expression levels on the maternal-fetal tolerance function of decidual natural killer (dNK) cells, are still unknown. METHODS: Pregnancy outcomes of T. gondii-infected C57BL/6 and Lgals9-/- pregnant mice models were recorded. Expression of Gal-9, c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), and Forkhead box protein O1 (FOXO1) was detected by western blotting, flow cytometry or immunofluorescence. The binding of FOXO1 to the promoter of Lgals9 was determined by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). The expression of extracellular signal-regulated kinase (ERK), phosphorylated ERK (p-ERK), cAMP-response element binding protein (CREB), phosphorylated CREB (p-CREB), T-box expressed in T cells (T-bet), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in dNK cells was assayed by western blotting. RESULTS: Toxoplasma gondii infection increased the expression of p-JNK and FOXO1 in dMφ, resulting in a reduction in Gal-9 due to the elevated binding of FOXO1 with Lgals9 promoter. Downregulation of Gal-9 enhanced the phosphorylation of ERK, inhibited the expression of p-CREB and IL-10, and promoted the expression of T-bet and IFN-γ in dNK cells. In the mice model, knockout of Lgals9 aggravated adverse pregnancy outcomes caused by T. gondii infection during pregnancy. CONCLUSIONS: Toxoplasma gondii infection suppressed Gal-9 expression in dMφ by activating the JNK/FOXO1 signaling pathway, and reduction of Gal-9 contributed to dysfunction of dNK via Gal-9/Tim-3 interaction. This study provides new insights for the molecular mechanisms of the adverse pregnancy outcomes caused by T. gondii.
Assuntos
Galectinas , Células Matadoras Naturais , Macrófagos , Camundongos Endogâmicos C57BL , Toxoplasma , Toxoplasmose , Animais , Feminino , Gravidez , Galectinas/genética , Galectinas/metabolismo , Camundongos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Decídua/imunologia , Camundongos Knockout , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Resultado da Gravidez , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismoRESUMO
Bladder cancer (BC) is a very common malignant tumor in the urinary system. However, the incidence rate, recurrence rate, progression rate and metastasis rate of bladder cancer are still very high, leading to poor long-term prognosis of patients. This study was to investigate the expression of transferrin receptor/TFRC protein in bladder cancer tissue and its role in inducing iron death of T24 human bladder cancer cells. Based on the intersection of 259 FerrDb genes in the iron death database with GSE13507 and GSE13167 data sets, 54 genes related to iron death in bladder cancer were obtained. Analyzing 54 genes, KEGG enrichment analysis showed that the pathways involved were mainly focused on iron death, autophagy, and tumor center carbon metabolism. GO analysis found that the molecular functions mainly gather in ubiquitin like protein ligase binding, ubiquitin protein ligase binding, and antioxidant activity. In the cellular components, it is mainly distributed in pigment granules, melanosomes, and the basal lateral plasma membrane. In biological processes, it is enriched in nutrient level responses, responses to extracellular stimuli, and cellular redox homeostasis. Screen out the top 10 core genes. The 10 core genes are SLC2A1, TFRC, EGFR, KRAS, CAV1, HSPA5, NFE2L2, VEGFA, PIK3CA, and HRAS. Finally, TFRC was selected as the research object. TCGA analysis showed that the expression level in bladder cancer tissue was higher than that in normal tissue, and the difference was statistically significant (P < 0.001). Conclusion (1) TFRC is highly expressed in many kinds of tumors, and it is more highly expressed in bladder cancer than in normal bladder tissue. (2) TFRC has certain diagnostic and prognostic value in bladder cancer. (3) Erastin, an iron death inducer, induced the iron death of T24 human bladder cancer cells, knocked down the expression of TFRC in T24 human bladder cancer cells, and preliminarily verified that silencing TFRC could inhibit the iron death of T24 human bladder cancer cells.
Assuntos
Antígenos CD , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Ferro , Receptores da Transferrina , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Ferroptose/genética , Ferro/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Antígenos CD/genética , Antígenos CD/metabolismoRESUMO
BACKGROUND: Toxoplasma gondii is an obligate intracellular parasite that can lead to adverse pregnancy outcomes, particularly in early pregnancy. Previous studies have illustrated the landscape of decidual immune cells. However, the landscape of decidual immune cells in the maternal-fetal microenvironment during T. gondii infection remains unknown. METHODS: In this study, we employed single-cell RNA sequencing to analyze the changes in human decidual immune cells following T. gondii infection. The results of scRNA-seq were further validated with flow cytometry, reverse transcription-polymerase chain reaction, western blot, and immunofluorescence staining. RESULTS: Our results showed that the proportion of 17 decidual immune cell clusters and the expression levels of 21 genes were changed after T. gondii infection. Differential gene analysis demonstrated that T. gondii infection induced the differential expression of 279, 312, and 380 genes in decidual NK cells (dNK), decidual macrophages (dMφ), and decidual T cells (dT), respectively. Our results revealed for the first time that several previously unknown molecules in decidual immune cells changed following infection. This result revealed that the function of maternal-fetal immune tolerance declined, whereas the killing ability of decidual immune cells enhanced, eventually contributing to the occurrence of adverse pregnancy outcomes. CONCLUSIONS: This study provides valuable resource for uncovering several novel molecules that play an important role in the occurrence of abnormal pregnancy outcomes induced by T. gondii infection.
Assuntos
Decídua , Resultado da Gravidez , Análise de Célula Única , Toxoplasma , Toxoplasmose , Feminino , Gravidez , Humanos , Decídua/imunologia , Decídua/parasitologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasma/imunologia , Perfilação da Expressão Gênica , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Transcriptoma , Linfócitos T/imunologiaRESUMO
BACKGROUND: Toxoplasma gondii infection during pregnancy can lead to fetal defect(s) or congenital complications. The inhibitory molecule B7-H4 expressed on decidual macrophages (dMφ) plays an important role in maternal-fetal tolerance. However, the effect of B7-H4 on the function of dMφ during T. gondii infection remains unclear. METHODS: Changes in B7-H4 expression on dMφ after T. gondii infection were explored both in vivo and in vitro. B7-H4-/- pregnant mice (pregnant mice with B7-H4 gene knockout) and purified primary human dMφ treated with B7-H4 neutralizing antibody were used to explore the role of B7-H4 signaling on regulating the membrane molecules, synthesis of arginine metabolic enzymes and cytokine production by dMφ with T. gondii infection. Also, adoptive transfer of dMφ from wild-type (WT) pregnant mice or B7-H4-/- pregnant mice to infected B7-H4-/- pregnant mice was used to examine the effect of B7-H4 on adverse pregnancy outcomes induced by T. gondii infection. RESULTS: The results illustrated that B7-H4-/- pregnant mice infected by T. gondii had poorer pregnancy outcomes than their wild-type counterparts. The expression of B7-H4 on dMφ significantly decreased after T. gondii infection, which resulted in the polarization of dMφ from the M2 toward the M1 phenotype by changing the expression of membrane molecules (CD80, CD86, CD163, CD206), synthesis of arginine metabolic enzymes (Arg-1, iNOS) and production of cytokines (IL-10, TNF-α) production. Also, we found that the B7-H4 downregulation after T. gondii infection increased iNOS and TNF-α expression mediated through the JAK2/STAT1 signaling pathway. In addition, adoptive transfer of dMφ from a WT pregnant mouse donor rather than from a B7-H4-/- pregnant mouse donor was able to improve adverse pregnancy outcomes induced by T. gondii infection. CONCLUSIONS: The results demonstrated that the downregulation of B7-H4 induced by T. gondii infection led to the dysfunction of decidual macrophages and contributed to abnormal pregnancy outcomes. Moreover, adoptive transfer of B7-H4+ dMφ could improve adverse pregnancy outcomes induced by T. gondii infection.
Assuntos
Toxoplasma , Toxoplasmose , Animais , Feminino , Humanos , Camundongos , Gravidez , Arginina/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Resultado da Gravidez , Fator de Necrose Tumoral alfa/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-SetRESUMO
BACKGROUND: Women in early pregnancy infected by Toxoplasma gondii may have severe adverse pregnancy outcomes, such as spontaneous abortion and fetal malformation. The inhibitory molecule T cell immunoglobulin and mucin domain 3 (Tim-3) is highly expressed on decidual dendritic cells (dDCs) and plays an important role in maintaining immune tolerance. However, whether T. gondii infection can cause dDC dysfunction by influencing the expression of Tim-3 and further participate in adverse pregnancy outcomes is still unclear. METHODS: An abnormal pregnancy model in Tim-3-deficient mice and primary human dDCs treated with Tim-3 neutralizing antibodies were used to examine the effect of Tim-3 expression on dDC dysfunction after T. gondii infection. RESULTS: Following T. gondii infection, the expression of Tim-3 on dDCs was downregulated, those of the pro-inflammatory functional molecules CD80, CD86, MHC-II, tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) were increased, while those of the tolerant molecules indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10) were significantly reduced. Tim-3 downregulation by T. gondii infection was closely associated with an increase in proinflammatory molecules and a decrease in tolerant molecules, which further resulted in dDC dysfunction. Moreover, the changes in Tim-3 induced by T. gondii infection further reduced the secretion of the cytokine IL-10 via the SRC-signal transducer and activator of transcription 3 (STAT3) pathway, which ultimately contributed to abnormal pregnancy outcomes. CONCLUSIONS: Toxoplasma gondii infection can significantly downregulate the expression of Tim-3 and cause the aberrant expression of functional molecules in dDCs. This leads to dDC dysfunction, which can ultimately contribute to abnormal pregnancy outcomes. Further, the expression of the anti-inflammatory molecule IL-10 was significantly decreased by Tim-3 downregulation, which was mediated by the SRC-STAT3 signaling pathway in dDCs after T. gondii infection.
Assuntos
Células Dendríticas , Receptor Celular 2 do Vírus da Hepatite A , Toxoplasmose , Animais , Feminino , Humanos , Camundongos , Gravidez , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Regulação para Baixo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Toxoplasma , Toxoplasmose/imunologiaRESUMO
Lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC) are two major subtypes of non-small cell lung cancer with distinct pathologic features and treatment paradigms. The heterogeneity can be attributed to genetic, transcriptional, and epigenetic parameters. Here, we established a multi-omics atlas, integrating 52 single-cell RNA sequencing and 2342 public bulk RNA sequencing. We investigated their differences in genetic amplification, cellular compositions, and expression modules. We revealed that LUAD and LUSC contained amplifications occurring selectively in subclusters of AT2 and basal cells, and had distinct cellular composition modules associated with poor survival of lung cancer. Malignant and stage-specific gene analyses further uncovered critical transcription factors and genes in tumor progression. Moreover, we identified subclusters with proliferating and differentiating properties in AT2 and basal cells. Overexpression assays of ten genes, including sub-cluster markers AQP5 and KPNA2, further indicated their functional roles, providing potential targets for early diagnosis and treatment in lung cancer.
Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismoRESUMO
Periodontitis is the most prevalent oral infection disease, which causes the destruction of periodontal supporting tissues and eventual tooth loss. This study aimed to investigate the molecular mechanism of miRNA-23b (miR-23b) in regulating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in an inflammatory environment. Results revealed that tumor necrosis factor-α (TNF-α), a notoriously inflammatory cytokine, remarkably attenuated the osteogenic differentiation of hPDLSCs, which were partially rescued by SKL2001 (Wnt/ß-catenin agonist). We further explored the underlying roles of miRNAs involved in TNF-α-inhibited osteogenesis of hPDLSCs. The miR-23b significantly increased with TNF-α stimulation, which was abolished by SKL2001. Similar to the effect of TNF-α, miR-23b agonist (agomir-23b) dramatically reduced the expression of runt-related transcription factor 2 (Runx2) and suppressed the osteogenic differentiation of hPDLSCs. The inhibition of miR-23b significantly increased Runx2, which is the major transcription factor during osteogenesis, thereby indicating that miR-23b was an endogenous regulator of Runx2 in hPDLSCs. Bioinformatic analysis and dual luciferase reporter assays confirmed that Runx2 was a target gene of miR-23b. Furthermore, the gain function assay of Runx2 revealed that the Runx2 overexpression efficiently reversed the suppression of the osteogenic differentiation of hPDLSCs with miR-23b agonist, suggesting that the suppressing effect of miR-23b on osteogenesis was mediated by Runx2 inhibition. Our study clarified that miR-23b mediated the TNF-α-inhibited osteogenic differentiation of hPDLSCs by targeting Runx2. Therefore, the expanded function of miR-23b in the osteogenesis of hPDLSCs under inflammatory conditions. This study might provide new insights and a novel therapeutic target for periodontitis.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Ligamento Periodontal/citologia , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adolescente , Adulto , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/fisiologia , Adulto JovemRESUMO
Autophagy can selectively target protein aggregates, pathogens, and dysfunctional organelles for the lysosomal degradation. Aberrant regulation of autophagy promotes tumorigenesis, while it is far less clear whether and how tumor-specific alterations result in autophagic aberrance. To form a link between aberrant autophagy selectivity and human cancer, we establish a computational pipeline and prioritize 222 potential LIR (LC3-interacting region) motif-associated mutations (LAMs) in 148 proteins. We validate LAMs in multiple proteins including ATG4B, STBD1, EHMT2 and BRAF that impair their interactions with LC3 and autophagy activities. Using a combination of transcriptomic, metabolomic and additional experimental assays, we show that STBD1, a poorly-characterized protein, inhibits tumor growth via modulating glycogen autophagy, while a patient-derived W203C mutation on LIR abolishes its cancer inhibitory function. This work suggests that altered autophagy selectivity is a frequently-used mechanism by cancer cells to survive during various stresses, and provides a framework to discover additional autophagy-related pathways that influence carcinogenesis.
Assuntos
Carcinogênese/genética , Macroautofagia/genética , Proteínas de Membrana/genética , Modelos Genéticos , Proteínas Musculares/genética , Neoplasias/genética , Algoritmos , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Simulação por Computador , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Mutação , Neoplasias/mortalidade , Neoplasias/patologia , Via de Pentose Fosfato/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteoma/genética , RNA-Seq , Análise Serial de Tecidos , Efeito Warburg em Oncologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Genome-wide association studies (GWAS) have identified multiple genomic loci linked to blood cell traits, however understanding the biological relevance of these genetic loci has proven to be challenging. Here, we performed a transcriptome-wide association study (TWAS) integrating gene expression and splice junction usage in neutrophils (N = 196) with a neutrophil count GWAS (N = 173,480 individuals). We identified a total of 174 TWAS-significant genes enriched in target genes of master transcription factors governing neutrophil specification. Knockout of a TWAS candidate at chromosome 5q13.2, TAF9, in CD34+ hematopoietic and progenitor cells (HSPCs) using CRISPR/Cas9 technology showed a significant effect on neutrophil production in vitro. In addition, we identified 89 unique genes significant only for splice junction usage, thus emphasizing the importance of alternative splicing beyond gene expression underlying granulopoiesis. Our results highlight the advantages of TWAS, followed by gene editing, to determine the functions of GWAS loci implicated in hematopoiesis.
Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Neutrófilos/metabolismo , Transcriptoma , Alelos , Diferenciação Celular/genética , Linhagem da Célula/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Hematopoese/genética , Humanos , Contagem de Leucócitos , Neutrófilos/citologia , Neutrófilos/imunologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Análise de Sequência de DNARESUMO
BACKGROUND: Cystic echinococcosis (CE) is a worldwide parasitic zoonosis caused by infection of the larval stage of tapeworm Echinococcus granulosus. In human CE, the parasites develop and form cysts in internal organs. The differentiated cysts can be classified into five types based on WHO-IWGE standard CE1-5 representing different developmental stages. Infection with E. granulosus triggers hosts' humoral and cellular response, displaying elevated serum antibodies and Th1 and Th2 cytokines, which are presumed to be in association with the disease outcome. Identification of immunological markers for evaluation of disease progression has been a growing concern. However, the distinctive profile of cytokines and antibodies associated with the cyst progression has not been ascertained. METHODS: To better understand the interaction between host immune response and disease outcome, the present study followed-up four CE patients over three years by yearly measuring serum level of 27 cytokines, total IgG and isotypes, and ultrasound scanning, beginning in year 1 for all patients with CE1 and CE2 cysts before treatment and continued in year 2 with CE4 and in year 3 with CE3-CE5 post-treatment. RESULTS: Nine cytokines including Th1-type IL-2, Th17-type IL-17A, and inflammatory cytokines IL-1ß, IL-1Rα and TNF-α, chemokines IL-8, MIP-1α, MIP-1ß, and growth factor G-CSF were significantly elevated in patients with cyst type CE1, compared to the normal controls, and then declined to a normal level at CE4 and CE5. Examining the antibody production, we found that serum specific IgG was significantly increased in patients with active and transitional cysts, specifically the total IgG at CE1/CE3/CE4-CE5, IgG4 at CE1 and IgG1 at CE1/CE3 cyst status, in comparison with the normal controls, but showed no significant changes between the cyst stages. CONCLUSIONS: Our findings provide new information on the profile of multiplex cytokines and serum antibodies associated with cyst stages in cystic echinococcosis patients through a three-year follow-up, implying that further studies using an approach combining cyst-associated immune parameters may aid in identifying immunological markers for differentiation of disease progression.
Assuntos
Anticorpos Antiprotozoários/sangue , Cistos/imunologia , Citocinas/sangue , Equinococose/imunologia , Echinococcus granulosus/imunologia , Idoso , Animais , China , Progressão da Doença , Equinococose/diagnóstico , Equinococose/parasitologia , Equinococose/terapia , Fazendeiros , Feminino , Seguimentos , Humanos , Imunoglobulina G/sangue , Estágios do Ciclo de Vida/imunologia , Masculino , Pessoa de Meia-Idade , UltrassonografiaRESUMO
Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co2+ and Ni2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co2+ and Ni2+ (≤0.5mgL-1) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL-1), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co2+ and Ni2+. In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co2+ and Ni2+ contents (2012.9±18.8 and 1997.7±29.2mgkg-1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co2+- and Ni2+-polluted water and high-quality biomass production.
Assuntos
Antioxidantes/metabolismo , Araceae/crescimento & desenvolvimento , Cobalto/análise , Níquel/análise , Fotossíntese/efeitos dos fármacos , Amido/metabolismo , Poluentes Químicos da Água/análise , Araceae/efeitos dos fármacos , Araceae/metabolismo , Biodegradação Ambiental , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Clorofila/metabolismo , Cobalto/metabolismo , Cobalto/farmacologia , Níquel/metabolismo , Níquel/farmacologia , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologia , alfa-Amilases/metabolismoRESUMO
Our current aim was to investigate whether injection of TGF-ß1 played an important role in improving abnormal pregnancy outcomes with T. gondii infection and how the TGF-ß1 regulated. Results showed that TGF-ß1 exhibited improved pregnancy outcomes induced by T. gondii infection. dNK cytotoxicity was increased with T. gondii infection while decreased with TGF-ß1 treatment. dNK cytotoxicity related NKG2D/DAP10 expression, perforin, granzyme, IFN-γ and killer subsets were all increased with T. gondii infection while decreased after TGF-ß1 treatment. In addition, anti-TGF-ß1 antibodies could aggregate the cytotoxicity of dNK cells and the levels of molecules above. These results indicated that TGF-ß1 treatment could improve the abnormal pregnancy outcomes with T. gondii infection by decreasing the cytotoxicity of dNK cells mediated by NKG2D/DAP10 pathway and killer subset. These results suggested that TGF-ß1 might be a potential immunoprotective method for the treatment of abnormal pregnancy outcomes following T. gondii infection.
Assuntos
Decídua/imunologia , Células Matadoras Naturais/imunologia , Complicações Infecciosas na Gravidez/imunologia , Resultado da Gravidez , Toxoplasma/imunologia , Toxoplasmose/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Citotoxicidade Imunológica , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Gravidez , Receptores Imunológicos/metabolismoRESUMO
OBJECTIVE: With the introduction of iodized salt worldwide, more and more people are exposed to more than adequate iodine intake levels with median urinary iodine excretion (MUI 200-300âµg/l) or excessive iodine intake levels (MUI >300âµg/l). The objective of this study was to explore the associations between more than adequate iodine intake levels and the development of thyroid diseases (e.g. thyroid dysfunction, thyroid autoimmunity, and thyroid structure) in two Chinese populations. DESIGN: A population-based cross-sectional study was conducted in two areas in which people are exposed to different levels of iodine intake (Rongxing, MUI 261âµg/l; Chengshan, MUI 145âµg/l). A total of 3813 individuals were recruited by random sampling. Thyroid hormones, thyroid autoantibodies in serum, and iodine levels in urine were measured. B-mode ultrasonography of the thyroid was also performed for each participant. RESULTS: The prevalence of subclinical hypothyroidism was significantly higher for subjects who live in Rongxing than those who live in Chengshan (5.03 vs 1.99%, P<0.001). The prevalence of positive anti-thyroid peroxidase antibody (TPOAb) and positive anti-thyroglobulin antibody (TgAb) was significantly higher for subjects in Rongxing than those in Chengshan (TPOAb: 10.64 vs 8.4%, P=0.02; TgAb: 10.27 vs 7.93%, P=0.01). The increase in thyroid antibodies was most pronounced in the high concentrations of TPOAb (TPOAb: ≥500âIU/ml) and low concentrations of TgAb (TgAb: 40-99âIU/ml) in Rongxing. CONCLUSIONS: More than adequate iodine intake could be a public health concern in terms of thyroid function and thyroid autoimmunity in the Chinese populations.