Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38743836

RESUMO

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Ratos , Regeneração Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Poliésteres/química , Diferenciação Celular , Ratos Sprague-Dawley , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Proliferação de Células , Crânio/lesões , Crânio/patologia , Durapatita/química , Durapatita/farmacologia
2.
Adv Healthc Mater ; 13(17): e2304178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38490686

RESUMO

Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching. The plate apatite-like lamellae are subsequently hatched on the pore walls through surface-induced epitaxial crystallization. Such a unique geometric architecture yields a synergistic effect on the osteogenic capability. The prepared scaffold leads to a 19.2% and 128.0% increase in the alkaline phosphatase activity of rat bone mesenchymal stem cells compared to that of the scaffolds with only oriented pores and only nanotopographical patterns, respectively. It also induces the greatest upregulation of osteogenic-related gene expression in vitro. The cranial defect repair results demonstrate that the prepared scaffold effectively promotes new bone regeneration, as indicated by a 350% increase in collagen I expression in vivo compared to the isotropic porous scaffold without surface nanotopology after implantation for 14 weeks. Overall, this work provides geometric motifs for the transduction of biophysical cues in 3D porous scaffolds, which is a promising option for tissue engineering applications.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade , Osteogênese/efeitos dos fármacos , Anisotropia , Engenharia Tecidual/métodos , Poliésteres/química , Ratos Sprague-Dawley , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Masculino , Fosfatase Alcalina/metabolismo , Crânio
3.
Medicine (Baltimore) ; 103(6): e36968, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335377

RESUMO

We intend to explore potential mechanisms of Tripterygium wilfordii Hook.f (TwHF) induced kidney injury (KI) using the methods of network toxicology and molecular docking. We determined TwHF potential compounds with its targets and KI targets, obtained the TwHF induced KI targets after intersecting targets of TwHF and KI. Then we conducted protein-protein interaction (PPI) network, gene expression analysis, gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to explore the mechanism of TwHF-induced KI. Finally we conducted molecular docking to verify the core toxic compounds and the targets. We obtained 12 TwHF toxic compounds and 62 TwHF-induced KI targets. PPI network, gene expression analysis and GO function enrichment analysis unveiled the key biological process and suggested the mechanism of TwHF-induced KI might be associated with inflammation, immune response, hypoxia as well as oxidative stress. KEGG pathway enrichment analysis indicated PI3K-Akt signaling pathway, HIF-1 signaling pathway and TNF signaling pathway were key signaling pathways of TwHF induced KI. Molecular docking showed that the binding energy of core targets and toxic compounds was all less than -6.5 kcal/mol that verified the screening ability of network pharmacology and provided evidence for modifying TwHF toxic compounds structure. Through the study, we unveiled the mechanism of TwHF induce KI that TwHF might activate PI3K-Akt signaling pathway as well as TNF signaling pathway to progress renal inflammation, mediate hypoxia via HIF-1 signaling pathway to accelerate inflammatory processes, and also provided a theoretical basis for modifying TwHF toxic compounds structure as well as supported the follow-up research.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia , Inflamação , Rim , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Tripterygium , Fator de Necrose Tumoral alfa/metabolismo
4.
Adv Healthc Mater ; 13(18): e2303549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38333940

RESUMO

Periodontitis is a common oral disease accompanied by inflammatory bone loss. The pathological characteristics of periodontitis usually accompany an imbalance in the periodontal immune microenvironment, leading to difficulty in bone regeneration. Therefore, effective treatment strategies are needed to modulate the immune environment in order to treat periodontitis. Here, highly-oriented periodic lamellae poly(ε-caprolactone) electrospun nanofibers (PLN) are developed by surface-directed epitaxial crystallization. The in vitro result shows that the PLN can precisely modulate macrophage polarization toward the M2 phenotype. Macrophages polarized by PLN significantly enhance the migration and osteogenic differentiation of Bone marrow stromal cells. Notably, results suggest that the topographical cues presented by PLN can modulate macrophage polarization by activating YAP, which reciprocally inhibits the NF-κB signaling pathway. The in vivo results indicate that PLN can inhibit inflammatory bone loss and facilitate bone regeneration in periodontitis. The authors' findings suggest that topographical nanofibers with periodic lamellae is a promising strategy for modulating immune environment to treat inflammatory bone loss in periodontitis.


Assuntos
Nanofibras , Osteogênese , Periodontite , Poliésteres , Nanofibras/química , Periodontite/terapia , Periodontite/patologia , Periodontite/imunologia , Periodontite/tratamento farmacológico , Animais , Camundongos , Poliésteres/química , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Células-Tronco Mesenquimais/imunologia , Imunomodulação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Camundongos Endogâmicos C57BL , Masculino , Inflamação/patologia , Proteínas de Sinalização YAP
5.
BMC Urol ; 24(1): 29, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310213

RESUMO

OBJECTIVE: To compare the outcomes of patients undergoing Retroperitoneal laparoscopic Radical nephrectomy (RLRN) and Transperitoneal laparoscopic Radical nephrectomy (TLRN). METHODS: A total of 120 patients with localized renal cell carcinoma were randomized into either RLRN or TLRN group. Mainly by comparing the patient perioperative related data, surgical specimen integrity, pathological results and tumor results. RESULTS: Each group comprised 60 patients. The two group were equivalent in terms of perioperative and pathological outcomes. The mean integrity score was significantly lower in the RLRN group than TLRN group. With a median follow-up of 36.4 months after the operation, Kaplan-Meier survival analysis showed no significant difference between RLRN and TLRN in overall survival (89.8% vs. 88.5%; P = 0.898), recurrence-free survival (77.9% vs. 87.7%; P = 0.180), and cancer-specific survival (91.4% vs. 98.3%; P = 0.153). In clinical T2 subgroup, the recurrence rate and recurrence-free survival in the RLRN group was significantly worse than that in the TLRN group (43.2% vs. 76.7%, P = 0.046). Univariate and multivariate COX regression analysis showed that RLRN (HR: 3.35; 95%CI: 1.12-10.03; P = 0.030), male (HR: 4.01; 95%CI: 1.07-14.99; P = 0.039) and tumor size (HR: 1.23; 95%CI: 1.01-1.51; P = 0.042) were independent risk factor for recurrence-free survival. CONCLUSIONS: Our study showed that although RLRN versus TLRN had roughly similar efficacy, TLRN outperformed RLRN in terms of surgical specimen integrity. TLRN was also significantly better than RLRN in controlling tumor recurrence for clinical T2 and above cases. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( https://www.chictr.org.cn/showproj.html?proj=24400 ), identifier: ChiCTR1800014431, date: 13/01/2018.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Laparoscopia , Humanos , Masculino , Neoplasias Renais/patologia , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Recidiva Local de Neoplasia/cirurgia , Nefrectomia/métodos , Carcinoma de Células Renais/patologia , Laparoscopia/métodos , Estudos Retrospectivos
6.
Int J Biol Macromol ; 261(Pt 2): 129829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296134

RESUMO

Three-dimensional interpenetrating and hierarchically porous carbon material is an efficient catalyst support in water remediation and it is still a daunting challenge to establish the relationship between hierarchically porous structure and catalytic degradation performance. Herein, a highly porous silica (SiO2)/cellulose-based carbon aerogel with iron-based catalyst (FexOy) was fabricated by in-situ synthesis, freeze-drying and pyrolysis, where the addition of SiO2 induced the hierarchically porous morphology and three-dimensional interpenetrating sheet-like network with nitrogen doping. The destruction of cellulose crystalline structure by SiO2 and the iron-catalyzed breakdown of glycosidic bonds synergistically facilitated the formation of electron-rich graphite-like carbon skeleton. The unique microstructure is confirmed to be favorable for the diffusion of reactants and electron transport during catalytic process, thus boosting the catalytic degradation performance of carbon aerogels. As a result, the catalytic degradation efficiency of tetracycline under light irradiation by adding only 5 mg of FexOy/SiO2 cellulose carbon aerogels was as high as 90 % within 60 min, demonstrating the synergistic effect of photocatalysis and Fenton reaction. This ingenious structure design provides new insight into the relationship between hierarchically porous structure of carbon aerogels and their catalytic degradation performance, and opens a new avenue to develop cellulose-based carbon aerogel catalysts with efficient catalytic performance.


Assuntos
Carbono , Compostos Heterocíclicos , Carbono/química , Ferro/química , Dióxido de Silício , Celulose/química , Porosidade , Tetraciclina/química , Antibacterianos , Catálise
7.
ACS Nano ; 17(18): 17908-17919, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676036

RESUMO

Only a minority of patients respond positively to cancer immunotherapy, and addressing this variability is an active area of immunotherapy research. Infiltration of tumors by immune cells is one of the most significant prognostic indicators of response and disease-free survival. However, the ability to noninvasively sample the tumor microenvironment for immune cells remains limited. Imaging in the near-infrared-II region using rare-earth nanocrystals is emerging as a powerful imaging tool for high-resolution deep-tissue imaging. In this paper, we demonstrate that these nanoparticles can be used for noninvasive in vivo imaging of tumor-infiltrating T-cells in a highly aggressive melanoma tumor model. We present nanoparticle synthesis and surface modification strategies for the generation of small, ultrabright, and biocompatible rare-earth nanocrystals necessary for deep tissue imaging of rare cell types. The ability to noninvasively monitor the immune contexture of a tumor during immunotherapy could lead to early identification of nonresponding patients in real time, leading to earlier interventions and better outcomes.


Assuntos
Melanoma , Metais Terras Raras , Nanopartículas , Humanos , Linfócitos T , Imunoterapia , Diagnóstico por Imagem , Nanopartículas/uso terapêutico , Microambiente Tumoral
8.
ACS Appl Mater Interfaces ; 15(34): 40954-40962, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584965

RESUMO

Given the rapid developments in modern devices, there is an urgent need for shape-memory polymer composites (SMPCs) in soft robots and other fields. However, it remains a challenge to endow SMPCs with both a reconfigurable permanent shape and a locally reversible shape transformation. Herein, a dynamic cross-linked network was facilely constructed in carbon nanotube/ethylene vinyl acetate copolymer (CNT/EVA) composites by designing the molecular structure of EVA. The CNT/EVA composite with 0.05 wt % CNT realized a steady-state temperature of ∼75 °C under 0.11 W/cm2 light intensity, which gave rise to remote actuation behavior. The dynamic cross-linked network along with a wide melting temperature offered opportunities for chemical and physical programming, thus realizing the achievement of the programmable three-dimensional (3D) structure and locally reversible actuation. Specifically, the CNT/EVA composite exhibited a superior permanent shape reconfiguration by activating the dynamic cross-linked network at 140 °C. The composite also showed a high reversible deformation rate of 11.1%. These features endowed the composites with the capability of transformation to 3D structure as well as locally reversible actuation performance. This work provides an attractive guideline for the future design of SMPCs with sophisticated structures and actuation capability.

9.
J Colloid Interface Sci ; 649: 501-509, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37356151

RESUMO

The impedance matching performance of carbon nanotubes (CNTs) can be effectively enhanced by developing a uniform magnetic impedance matching layer, which can take on critical significance in achieving the desirable microwave absorption (MA) performance. To obtain a uniform coating of Nickel (Ni) nanoparticles on CNTs, several methods have been developed (e.g., the γ-irradiation technique, electroless deposition, as well as microwave welding method). However, the intricate and complicated conditions of the above-mentioned methods limit their wide application. Therefore, controlling the distribution of Ni nanoparticles with the aid of a concise and effective method remains a great challenge. Herein, in view of the uniform dispersion effect of polyvinylpyrrolidone (PVP) on CNTs and its complexation with Ni ions, uniform coating of Ni nanoparticles on CNTs is well developed after it is introduced in the hydrothermal process. The prepared Ni/CNTs composites exhibited excellent MA performance in comparison with those of reported Ni/CNTs composites for the ideal impedance matching performance and microwave attenuation ability. When the filler content was only 15 wt%, the minimum reflection loss (RLmin) reached -39.5 dB, and the effective bandwidth (EB) with RL < -10 dB reached 5.2 GHz at the thickness of 1.15 mm. A scalable strategy of regulating the distribution of Ni nanoparticles and preparing a lightweight microwave absorber based on CNTs was developed in this study, which can serve as a vital guideline for preparing novel MA composite materials.

10.
Hum Vaccin Immunother ; 19(1): 2202127, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37128699

RESUMO

DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Camundongos , Animais , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias , Adjuvantes Imunológicos , Imunidade Celular
11.
ACS Appl Mater Interfaces ; 15(19): 23701-23710, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140941

RESUMO

Polypropylene (PP) serves as an excellent commercialized polymer dielectric film owing to its high breakdown strength, excellent self-healing ability, and flexibility. However, its low dielectric constant causes the large volume of the capacitor. Constructing multicomponent polypropylene-based all-organic polymer dielectric films is a facile strategy for achieving high energy density and efficiency simultaneously. Thereinto, the interfaces between the components become the key factors that determine the energy storage performance of the dielectric films. In this work, we propose to fabricate high-performance polyamide 513 (PA513)/PP all-organic polymer dielectric films via the construction of abundant well-aligned and isolated nanofibrillar interfaces. Laudably, a significant enhancement in the breakdown strength is achieved from 573.1 MV/m of pure PP to 692.3 MV/m with 5 wt % of PA513 nanofibrils. Besides, a maximum discharge energy density of about 4.4 J/cm2 is realized with 20 wt % of PA513 nanofibrils, which is about 1.6-folds higher than pure PP. Simultaneously, the energy efficiency of samples with modulated interfaces maintains higher than 80% up to 600 MV/m, which is much higher than pure PP of about 40.7% at 550 MV/m. This work provides a new strategy to fabricate high-performance multicomponent all-organic polymer dielectric films on an industrial scale.

12.
J Bone Miner Metab ; 41(4): 457-469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37036534

RESUMO

INTRODUCTION: Osteoporosis invariably manifests as loss of bone, which is replaced by adipose tissue; this can easily lead to fractures, accompanied by delayed and poor healing. Adiponectin (APN) balances osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs). Therefore, this study explored whether adiponectin promotes bone fracture healing by regulating the balance between osteogenesis and adipogenesis. MATERIALS AND METHODS: We used adenovirus overexpression vectors carrying APN (Ad-APN-GFP) to treat ovariectomized (OVX) mouse BMSCs and osteoporotic bone fractures to investigate the role of APN in bone microenvironment metabolism in osteoporotic fractures. We subsequently established an OVX mice and bone fracture model using Ad-APN-GFP treatment to investigate whether APN could promote bone fracture healing in osteoporotic mice. RESULTS: The experimental results showed that APN is a critical molecule in diverse differentiation directions in OVX mouse BMSCs, with pro-osteogenesis and anti-adipogenesis properties. Importantly, our study revealed that Ad-APN-GFP treatment facilitates bone generation and healing around the osteoporotic fracture ends. Moreover, we identified that Sirt1 and Wnt signaling were closely related to the pro-osteogenesis and anti-adipogenesis commitment of APN in OVX mouse BMSCs and femoral tissues. CONCLUSION: We demonstrated that APN overexpression facilitates bone fracture healing in osteoporosis. Furthermore, APN overexpression promoted bone formation in OVX mouse BMSCs and bone fracture ends by regulating the balance between osteogenesis and adipogenesis both in vitro and in vivo.


Assuntos
Fraturas Ósseas , Osteoporose , Camundongos , Animais , Osteogênese , Adiponectina/genética , Consolidação da Fratura , Diferenciação Celular , Osteoporose/metabolismo
13.
bioRxiv ; 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36711668

RESUMO

Our understanding of the lymphatic vascular system lags far behind that of the blood vascular system, limited by available imaging technologies. We present a label-free optical imaging method that visualizes the lymphatic system with high contrast. We developed an orthogonal polarization imaging (OPI) in the shortwave infrared range (SWIR) and imaged both lymph nodes and lymphatic vessels of mice and rats in vivo through intact skin, as well as human mesenteric lymph nodes in colectomy specimens. By integrating SWIR-OPI with U-Net, a deep learning image segmentation algorithm, we automated the lymph node size measurement process. Changes in lymph nodes in response to cancer progression were monitored in two separate mouse cancer models, through which we obtained insights into pre-metastatic niches and correlation between lymph node masses and many important biomarkers. In a human pilot study, we demonstrated the effectiveness of SWIR-OPI to detect human lymph nodes in real time with clinical colectomy specimens. One Sentence Summary: We develop a real-time high contrast optical technique for imaging the lymphatic system, and apply it to anatomical pathology gross examination in a clinical setting, as well as real-time monitoring of tumor microenvironment in animal studies.

14.
Clin Exp Pharmacol Physiol ; 50(1): 68-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36164968

RESUMO

The gut microbiota seems to be a major modulator of cardiovascular diseases, such as myocardial infarction. Dapagliflozin, a sodium glucose cotransporter 2 inhibitor (SGLT2i), is an antidiabetic agent that was recently utilized in patients with cardiovascular diseases. This study aims to investigate the effects of dapagliflozin on the faecal microbiota of postinfarction non-diabetic mice. A total of 19 male mice were randomly divided into three groups, where two groups were enduced with myocardial infarction (MI) by left anterior descending ligation. One day after the surgery, each group was administered normal saline (15 mL/kg/day, 0.9%) or dapagliflozin (1.5 mg/kg/day) for 4 weeks. Echocardiography was obtained on day 28 post MI. Masson's trichrome staining was used to determine the degree of fibrosis. Faecal samples were collected to assess the microbiome by 16S ribosomal RNA gene sequencing. We found that dapagliflozin significantly improved cardiac function in the non-diabetic myocardial infarction mice model after the 28-day treatment, especially in ejection fraction and fractional shortening (p < 0.01). Enterotypes were composed of Muribaculaceae and Lactobacillaceae after dapagliflozin treatment, while Muribaculaceae and Erysipelotrichaceae were the main enterotypes post-MI. Dapagliflozin increased the abundance of beneficial bacteria like Lactobacillaceae, while decreasing the abundance of beneficial bacteria like Bifidobacteriaceae. It was interesting to discover that Proteobacteria (especially Desulfovibrionaceae) were enriched after the dapagliflozin treatment for myocardial infarction. Dapagliflozin increased the abundance of the main beneficial bacteria. In post-myocardial infarction treatments, using dapagliflozin could positively contribute to the improvement of cardiac function and alter the structure of faecal microbiota.


Assuntos
Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Masculino , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Solução Salina , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
15.
Mater Today Bio ; 16: 100438, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193342

RESUMO

Periodontitis is a pathological dental condition that damages the periodontal tissue and leads to tooth loss. Bone regeneration in periodontitis-related alveolar bone defects remains a challenge for periodontists and tissue engineers because of the complex periodontal microenvironment. The inflammatory microenvironment is associated with poor osteogenesis; therefore, the reduction of inflammation is essential for bone regeneration in periodontitis-related alveolar bone defects. Here, we developed a programmed core-shell nanofibers that allows the sequential and controlled release of tea polyphenols (TP) and AdipoRon (APR) to control inflammation and promote bone regeneration to repair periodontitis-related alveolar bone defects. Core-shell nanofibers with a sequentially controlled release function were synthesized using electrospinning. We investigated the therapeutic effects of the nanofibers in vitro and in a mouse periodontitis model. The results of the release profiles demonstrated that TP was released rapidly in the early stages and APR was continuously released thereafter. In vitro experiments showed that the programmed core-shell nanofibers reduced the levels of proinflammatory cytokines and increased osteogenic differentiation in an inflammatory microenvironment. In vivo experiments, the programmed core-shell nanofibers ameliorated periodontal tissue inflammation and improved alveolar bone regeneration. Our results indicated that the programmed core-shell nanofibers with a sequential-release function provides an ideal strategy for repairing periodontitis-related alveolar bone defects, and its application in the treatment of diseases with spatiotemporal specificity is promising.

16.
Mech Ageing Dev ; 207: 111714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931242

RESUMO

Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. The aim of this study was to investigate the role of Klotho in cardiac function and remodeling as well as its underlying mechanism in mice with MI-induced HF. For in vivo analyses, MI or sham MI were established in C57BL/6 mice. For in vitro analyses, the H9C2 cells were used to establish a model of oxygen glucose deprivation (OGD). The In vivo and in vitro models were treated with or without Klotho. 3-methyladenine (3-MA) was used to inhibit autophagy in MI mice and H9C2 cells. Cardiac function, cardiac fibrosis, cardiomyocyte autophagy, inflammatory cytokines and myocardial apoptosis were measured. Our results revealed that Klotho significantly improved cardiac function and remodeling, reduced cardiac fibrosis, and suppressed the levels of myocardial inflammatory factors and apoptosis in MI-induced HF model. Klotho enhanced autophagy in cardiomyocytes and inhibited PI3K/AKT/mTOR signaling pathway in the mouse model of MI. Similar observations were made in the OGD model after treatment with Klotho. However, the cardioprotective effects of Klotho was significantly suppressed by 3-MA. Our data indicate that Klotho exerts its cardioprotective effects against MI-induced HF by inducing autophagy through the inhibition of PI3k/AKT/mTOR signaling pathway.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Apoptose , Autofagia/fisiologia , Citocinas/metabolismo , Fibrose , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Ann Transl Med ; 10(11): 625, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813320

RESUMO

Background: Anesthesia, nerve block, therapeutic injections, and biopsies all require an acupuncture intervention. However, traditional two-dimensional (2D) ultrasound-guided needle puncture is often challenging and therefore requires the use of three-dimensional (3D) ultrasound images to accurately identify and evaluate the patient's anatomical structure. Methods: In this study, a 3D multi-modal intelligent intervention system using electromagnetic navigation for real-time positioning and ultrasound images was described. A total of 190 cases requiring puncture were randomly divided into control (conventional 2D ultrasound instrument) and experimental (novel 3D ultrasound imedis9000) groups. The advantages and disadvantages of the two puncture methods were prospectively analyzed in the 190 cases, and the feasibility of electromagnetic navigation real-time positioning was compared to ultrasound imaging. Results: This study included 190 cases from two centers that required puncture treatment and were randomly assigned to the control (conventional 2D ultrasound instrument; n=95) or the experimental (novel 3D ultrasound imedis9000; n=95) groups. Percutaneous vascular puncture, percutaneous biopsy, percutaneous bile duct puncture, thoracic paravertebral nerve block, and sciatic nerve block operations were performed separately. The results indicated that the puncture time and number of trials in the experimental group were significantly lower than those in the control group. No significant difference was identified in the basic vital signs between the two groups before and after surgery. The success rate of the novel 3D ultrasound imedis9000 was 100%, and the success rate of the conventional 2D ultrasound instrument was 95.7%. Furthermore, the results also showed that the novel 3D ultrasound imedis9000 and the matching coaxial positioning channel puncture needle had low pain, good toughness and strength, and great convenience. Conclusions: The new 3D multi-modal intelligent intervention system using electromagnetic navigation real-time positioning and ultrasound images has significant advantages compared with conventional 2D ultrasound in terms of puncture time, number of trials, operation difficulty, and convenience, and is worthy of further promotion and use in clinics. Trial Registration: Beijing Municipal Drug Administration, 20190015.

18.
mBio ; 12(5): e0250921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634930

RESUMO

The pathogenic yeast Cryptococcus neoformans produces polyploid titan cells in response to the host lung environment that are critical for host adaptation and subsequent disease. We analyzed the in vivo and in vitro cell cycles to identify key aspects of the C. neoformans cell cycle that are important for the formation of titan cells. We identified unbudded 2C cells, referred to as a G2 arrest, produced both in vivo and in vitro in response to various stresses. Deletion of the nonessential cyclin Cln1 resulted in overproduction of titan cells in vivo and transient morphology defects upon release from stationary phase in vitro. Using a copper-repressible promoter PCTR4-CLN1 strain and a two-step in vitro titan cell formation assay, our in vitro studies revealed Cln1 functions after the G2 arrest. These studies highlight unique cell cycle alterations in C. neoformans that ultimately promote genomic diversity and virulence in this important fungal pathogen. IMPORTANCE Dysregulation of the cell cycle underlies many human genetic diseases and cancers, yet numerous organisms, including microbes, also manipulate the cell cycle to generate both morphologic and genetic diversity as a natural mechanism to enhance their chances for survival. The eukaryotic pathogen Cryptococcus neoformans generates morphologically distinct polyploid titan cells critical for host adaptation and subsequent disease. We analyzed the C. neoformans in vivo and in vitro cell cycles to identify changes required to generate the polyploid titan cells. C. neoformans paused cell cycle progression in response to various environmental stresses after DNA replication and before morphological changes associated with cell division, referred to as a G2 arrest. Release from this G2 arrest was coordinated by the cyclin Cln1. Reduced CLN1 expression after the G2 arrest was associated with polyploid titan cell production. These results demonstrate a mechanism to generate genomic diversity in eukaryotic cells through manipulation of the cell cycle that has broad disease implications.


Assuntos
Ciclo Celular/genética , Cryptococcus neoformans/genética , Ciclinas/genética , Proteínas Fúngicas/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Estresse Fisiológico/genética , Animais , Ciclo Celular/fisiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Ciclinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Estresse Fisiológico/fisiologia , Virulência
19.
Mater Sci Eng C Mater Biol Appl ; 124: 112040, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947540

RESUMO

To avoid catastrophic bacterial infection in prosthesis failure, ultrahigh molecular weight polyethylene (UHMWPE), a common bearing material of artificial joints, has been formulated with antibiotics to eliminate bacteria locally at the implant site. However, the pressing issues regarding cytotoxic effects and evolution of drug resistant bacteria necessitates the development of bio-friendly bacteriostat with long bacteriostatic efficacy. Herein, tea polyphenol extracted from nature source was introduced in UHMWPE as a biogenic antimicrobial. Controlled antimicrobial activity was achieved by chemical crosslinking to regulate the release of the tea polyphenol. In addition, the crosslinking efficiency of UHMWPE blends with high loaded tea polyphenol was significantly improved in comparison to radiation crosslinking. The immobilized tea polyphenols also enhanced the oxidation stability of the UHMWPE, which is essential to prolong the service life in vivo and the storage time in vitro. The blends presented good biocompatibility, despite cell repellent on the highly crosslinked surface. Chemically crosslinked tea polyphenol/UHMWPE exhibited feasible properties for total joint implants, which is promising for clinical application.


Assuntos
Artroplastia de Substituição , Polifenóis , Teste de Materiais , Peso Molecular , Polietilenos , Polifenóis/farmacologia , Chá , Tiram
20.
ACS Macro Lett ; 10(1): 71-77, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35548990

RESUMO

The glassy polymer of polystyrene (PS) enjoys a good reputation as a promising optical material; however, the inherent brittleness hinders its further applications. Conventional toughening methods are realized based on the premise of a sacrifice in transparency and stiffness. In this work, we found an unprecedented strategy to address these obstacles by combining extensional stress-induced ductility and suppressing physical aging. PS-based film with a high stiffness, long-term ductility, and excellent transparency is achieved by introducing a styrene-butadiene block copolymer into the PS matrix and subsequently annealing stretched. A nanofibrillar structure of the polybutadiene (PB) phase is formulated surrounded by a PS matrix, and thus, the elongation at break enhances from 3.1% up to 86.8%, accompanying the yield strength enhanced from 25.5 to 62.2 MPa. More significantly, compared with neat PS, these films survive from physical aging and persistent ductility over time. The morphology deformation induced by stress makes an obvious contribution to the improvement of transparency. Investigating the dynamics of chain segments indicates that the incorporation of the copolymer can restrict rearrangement and local relaxation to the PS chain. This work could pave a potential route toward high-performance PS and might be transferable to other glassy polymers with a fragile character.


Assuntos
Butadienos , Poliestirenos , Polímeros/química , Poliestirenos/química , Rejuvenescimento , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA