Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Stem Cell ; 31(6): 921-939.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38692273

RESUMO

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.


Assuntos
Néfrons , Organoides , Animais , Organoides/citologia , Organoides/metabolismo , Humanos , Néfrons/citologia , Camundongos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Podócitos/metabolismo , Podócitos/citologia , Rim/patologia , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Modelos Biológicos , Edição de Genes
2.
J Comput Chem ; 45(22): 1936-1944, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703182

RESUMO

In symmetry-adapted perturbation theory (SAPT), accurate calculations on non-covalent interaction (NCI) for large complexes with more than 50 atoms are time-consuming using large basis sets. More efficient ones with smaller basis sets usually result in poor prediction in terms of dispersion and overall energies. In this study, we propose two composite methods with baseline calculated at SAPT2/aug-cc-pVDZ and SAPT2/aug-cc-pVTZ with dispersion term corrected at SAPT2+ level using bond functions and smaller basis set with δ MP2 corrections respectively. Benchmark results on representative NCI data sets, such as S22, S66, and so forth, show significant improvements on the accuracy compared to the original SAPT Silver standard and comparable to SAPT Gold standard in some cases with much less computational cost.

3.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735920

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Assuntos
DNA de Cadeia Simples , Quadruplex G , Células-Tronco Mesenquimais , MicroRNAs , Células Supressoras Mieloides , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , DNA de Cadeia Simples/química , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , DNA Circular/química , Humanos , Melanoma/tratamento farmacológico
4.
Cell Death Discov ; 10(1): 151, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519492

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. Despite comprehensive treatment with traditional surgery, radiotherapy, and chemotherapy, the median survival rate is <14.6% and the 5-year survival rate is only 5%. FBXO22, a substrate receptor of the SCF ubiquitin ligases, has been reported to play a promoting role in melanoma, liver cancer, cervical cancer, and other cancers. However, the function of FBXO22 in GBM has not been reported. In the present study, we demonstrate that FBXO22 is highly expressed in glioma and is positively correlated with worse pathological features and shorter survival of GBM patients. We revealed that FBXO22 promotes GBM cell proliferation, angiogenesis, migration, and tumorigenesis in vitro and in vivo. In terms of mechanism, we reveal that FBXO22 decreases VHL expression by directly mediating VHL ubiquitination degradation, which ultimately increases HIF-1α and VEGFA expression. In addition, our data confirm that there are positive correlations among FBXO22, HIF-1α, and VEGFA expression, and there is a negative correlation between FBXO22 and VHL protein expression in glioma patients. Our study strongly indicates that FBXO22 is a promising diagnostic marker and therapeutic target for glioma patients.

5.
Cell Death Dis ; 15(2): 170, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402202

RESUMO

Many types of cancer cells, including colorectal cancer cells (CRC), can simultaneously enhance glycolysis and repress the mitochondrial tricarboxylic acid (TCA) cycle, which is called the Warburg effect. However, the detailed mechanisms of abnormal activation of the glycolysis pathway in colorectal cancer are largely unknown. In this study, we reveal that the protein arginine methyltransferase 1 (PRMT1) promotes glycolysis, proliferation, and tumorigenesis in CRC cells. Mechanistically, PRMT1-mediated arginine asymmetric dimethylation modification of phosphoglycerate kinase 1 (PGK1, the first ATP-producing enzyme in glycolysis) at R206 (meR206-PGK1) enhances the phosphorylation level of PGK1 at S203 (pS203-PGK1), which inhibits mitochondrial function and promotes glycolysis. We found that PRMT1 and meR206-PGK1 expression were positively correlated with pS203-PGK1 expression in tissues from colorectal cancer patients. Furthermore, we also confirmed that meR206-PGK1 expression is positively correlated with the poor survival of patients with colorectal cancer. Our findings show that PRMT1 and meR206-PGK1 may become promising predictive biomarkers for the prognosis of patients with CRC and that arginine methyltransferase inhibitors have great potential in colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Fosfoglicerato Quinase , Humanos , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Arginina/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica , Metilação , Neoplasias Colorretais/genética , Glicólise/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Cell Death Discov ; 10(1): 72, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341427

RESUMO

The metastasis of non-small cell lung cancer (NSCLC) is the leading death cause of NSCLC patients, which requires new biomarkers for precise diagnosis and treatment. Circular RNAs (circRNAs), the novel noncoding RNA, participate in the progression of various cancers as microRNA or protein sponges. We revealed the mechanism by which circEPB41L2 (hsa_circ_0077837) blocks the aerobic glycolysis, progression and metastasis of NSCLC through modulating protein metabolism of PTBP1 by the E3 ubiquitin ligase TRIP12. With ribosomal RNA-depleted RNA seq, 57 upregulated and 327 downregulated circRNAs were identified in LUAD tissues. circEPB41L2 was selected due to its dramatically reduced levels in NSCLC tissues and NSCLC cells. Interestingly, circEPB41L2 blocked glucose uptake, lactate production, NSCLC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, acting as a scaffold, circEPB41L2 bound to the RRM1 domain of the PTBP1 and the E3 ubiquitin ligase TRIP12 to promote TRIP12-mediated PTBP1 polyubiquitylation and degradation, which could be reversed by the HECT domain mutation of TRIP12 and circEPB41L2 depletion. As a result, circEPB41L2-induced PTBP1 inhibition led to PTBP1-induced PKM2 and Vimentin activation but PKM1 and E-cadherin inactivation. These findings highlight the circEPB41L2-dependent mechanism that modulates the "Warburg Effect" and EMT to inhibit NSCLC development and metastasis, offering an inhibitory target for NSCLC treatment.

7.
Technol Health Care ; 32(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37270822

RESUMO

BACKGROUND: Juxta-papillary duodenal diverticula (JPDD) are common but are usually asymptomatic, and they are often diagnosed by coincidence. OBJECTIVE: To analyse the anatomy and classification of JPDD and its relationship with biliary and pancreatic disorders, and to explore the diagnostic value of multi-slice spiral computed tomography (MSCT) in patients with JPDD. METHODS: The imaging data of patients with JPDD, which was obtained via abdominal computed tomography examination and confirmed via gastroscopy and/or upper gastrointestinal barium enema, in our hospital from 1 January 2019 to 31 December 2020 were retrospectively analysed. All patients were scanned using MSCT, and the imaging findings, classification and grading were analysed. RESULTS: A total of 119 duodenal diverticula were detected in 96 patients, including 73 single diverticula and 23 multiple diverticula. The imaging findings were mainly cystic lesions of the inner wall of the duodenum protruding to the outside of the cavity. The thin layer showed a narrow neck connected with the duodenal cavity, and the shape and size of the diverticula were different: 67 central-type cases and 29 peripheral-type cases. There were 50 cases of type I, 33 cases of type II, 19 cases of type III and six cases of type IV. Furthermore, there were seven small, 87 medium and 14 large diverticula. The differences in the location and size of the JPDD in MSCT grading were statistically significant (P< 0.05). CONCLUSION: The MSCT method has an important diagnostic value for the classification of JPDD, and MSCT images are helpful in the clinical evaluation of patients with JPDD and the selection of treatment options.


Assuntos
Divertículo , Duodenopatias , Humanos , Estudos Retrospectivos , Duodenopatias/diagnóstico por imagem , Divertículo/diagnóstico por imagem , Divertículo/patologia , Tomografia Computadorizada por Raios X , Tomografia Computadorizada Espiral
9.
BMC Med ; 21(1): 491, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082312

RESUMO

BACKGROUND: Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS: We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS: We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION: Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.


Assuntos
Esquizofrenia , Gêmeos Monozigóticos , Humanos , Teorema de Bayes , Alelos , Gêmeos Monozigóticos/genética , Células HEK293 , Metilação de DNA/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Epigênese Genética/genética
10.
Int J Biol Sci ; 19(15): 4948-4966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781520

RESUMO

A high recurrence rate of non-Hodgkin's lymphoma (NHL) following chimeric antigen receptor T (CAR T) cell treatment remains a bottleneck, and immunosuppressive tumor microenvironment (TME) compromising CAR T cell efficacy in NHL is the primary cause of relapse. Accordingly, modifying the structure of CAR T cells to attenuate the inhibitory effect of TME thus reducing recurrence rate is a valuable research topic. CD47 has been proved to be a promising therapeutic target and is crucial in regulating macrophage function. Herein, we engineered CD19-CAR T cells to secrete an anti-CD47 single-chain variable fragment (scFv) and validated their function in enhancing antitumor efficacy, regulating T cells differentiation, modifying phagocytosis and polarization of macrophages by in vitro and in vivo researches. The efficacy was analogous or preferable to the combination of CAR T cells and CD47 antibody. Of note, anti-CD47 scFv secreting CAR T cells exert a more potent immune response following specific antigen stimulation compared with parental CAR T cells, characterized by more efficient degranulation and cytokine production with polyfunctionality. Furthermore, locally delivering anti-CD47 by CAR T cells potentially limits toxicities relevant to systemic antibody treatment. Collectively, our research provides a more effective and safer CAR T cell transformation method for enhancing tumor immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Antígeno CD47 , Linfócitos T , Imunoterapia/métodos , Receptores de Antígenos Quiméricos/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Microambiente Tumoral
11.
Infect Dis Poverty ; 12(1): 82, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697423

RESUMO

BACKGROUND: Blastocystis hominis (Bh) is zoonotic parasitic pathogen with a high prevalent globally, causing opportunistic infections and diarrhea disease. Human immunodeficiency virus (HIV) infection disrupts the immune system by depleting CD4+ T lymphocyte (CD4+ T) cell counts, thereby increasing Bh infection risk among persons living with HIV (PLWH). However, the precise association between Bh infection risk and HIV-related biological markers and treatment processes remains poorly understood. Hence, the purpose of the study was to explore the association between Bh infection risk and CD4+ T cell counts, HIV viral load (VL), and duration of interruption in antiviral therapy among PLWH. METHODS: A large-scale multi-center cross-sectional study was conducted in China from June 2020 to December 2022. The genetic presence of Bh in fecal samples was detected by real-time fluorescence quantitative polymerase chain reaction, the CD4+ T cell counts in venous blood was measured using flowcytometry, and the HIV VL in serum was quantified using fluorescence-based instruments. Restricted cubic spline (RCS) was applied to assess the non-linear association between Bh infection risk and CD4+ T cell counts, HIV VL, and duration of interruption in highly active antiretroviral therapy (HARRT). RESULTS: A total of 1245 PLWH were enrolled in the study, the average age of PLWH was 43 years [interquartile range (IQR): 33, 52], with 452 (36.3%) being female, 50.4% (n = 628) had no immunosuppression (CD4+ T cell counts > 500 cells/µl), and 78.1% (n = 972) achieved full virological suppression (HIV VL < 50 copies/ml). Approximately 10.5% (n = 131) of PLWH had interruption. The prevalence of Bh was found to be 4.9% [95% confidence interval (CI): 3.8-6.4%] among PLWH. Significant nonlinear associations were observed between the Bh infection risk and CD4+ T cell counts (Pfor nonlinearity < 0.001, L-shaped), HIV VL (Pfor nonlinearity < 0.001, inverted U-shaped), and duration of interruption in HARRT (Pfor nonlinearity < 0.001, inverted U-shaped). CONCLUSIONS: The study revealed that VL was a better predictor of Bh infection than CD4+ T cell counts. It is crucial to consider the simultaneous surveillance of HIV VL and CD4+ T cell counts in PLWH in the regions with high level of socioeconomic development. The integrated approach can offer more comprehensive and accurate understanding in the aspects of Bh infection and other opportunistic infections, the efficacy of therapeutic drugs, and the assessment of preventive and control strategies.


Assuntos
Infecções por Blastocystis , HIV , Humanos , Feminino , Adulto , Masculino , Infecções por Blastocystis/complicações , Infecções por Blastocystis/epidemiologia , Estudos Transversais , China/epidemiologia , Terapia Antirretroviral de Alta Atividade
13.
Cell Death Dis ; 14(8): 498, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542030

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/ß-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.


Assuntos
Histonas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Acetilação , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Via de Sinalização Wnt/genética
14.
Cell Death Dis ; 14(5): 322, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173306

RESUMO

Protein arginine methyltransferase 2 (PRMT2) is involved in several biological processes via histone methylation and transcriptional regulation. Although PRMT2 has been reported to affect breast cancer and glioblastoma progression, its role in renal cell cancer (RCC) remains unclear. Here, we found that PRMT2 was upregulated in primary RCC and RCC cell lines. We demonstrated that PRMT2 overexpression promoted RCC cell proliferation and motility both in vitro and in vivo. Moreover, we revealed that PRMT2-mediated H3R8 asymmetric dimethylation (H3R8me2a) was enriched in the WNT5A promoter region and enhanced WNT5A transcriptional expression, leading to activation of Wnt signaling and malignant progression of RCC. Finally, we confirmed that high PRMT2 and WNT5A expression was strongly correlated with poor clinicopathological characteristics and poor overall survival in RCC patient tissues. Our findings indicate that PRMT2 and WNT5A may be promising predictive diagnostic biomarkers for RCC metastasis. Our study also suggests that PRMT2 is a novel therapeutic target in patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Peptídeos e Proteínas de Sinalização Intracelular , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Renais/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Wnt-5a/genética , Proteína-Arginina N-Metiltransferases/genética
15.
J Orthop Surg Res ; 18(1): 332, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37143107

RESUMO

PURPOSE: To develop a bidirectional slide guide to assist screw placement in the axial lamina and to preliminarily discuss the accuracy and feasibility of auxiliary screw placement. METHODS: CT data from 40 randomly selected patients were imported into the software for modelling, and cross-pinning was used to simulate pinning. According to the different crossing methods of the upper and lower laminar screws, they are divided into two groups. In the software, the position of the needlepoint of each screw is accurately measured, and the needle point is kept unchanged to simulate the movable range of the screw tail under the condition that the body does not penetrate the cortical bone. The data were compared by grouping and gender. Finally, the guide was designed by combining the screw exit point and fine adjustment angle data of all patients with the centripetal principle of the slide rail. RESULTS: The needle exit data L1/L2/L3/L4 were 6.44 ± 0.52 mm, 7.05 ± 0.48 mm, 3.55 ± 0.75 mm and 5.09 ± 0.74 mm, respectively, and the fine adjustment angle of the slide rail was 10.51° ± 0.87°. There was no significant difference between the two groups or between men and women (p > 0.05). CONCLUSION: In this experiment, using the data obtained from the simulation of screw insertion, a two-way slide guide was designed to assist the insertion of axial laminar screws. The guide locks the screw outlet point to position and guides the screw inlet point, which improves the accuracy and safety of screw placement.


Assuntos
Fixação Intramedular de Fraturas , Parafusos Pediculares , Fusão Vertebral , Masculino , Humanos , Feminino , Parafusos Ósseos , Software , Osso Cortical , Fusão Vertebral/métodos
16.
Cancer Med ; 12(10): 11177-11190, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880159

RESUMO

BACKGROUND: Yin Yang-1 (YY1) is identified as a transcription factor with multiple functions. However, the role of YY1 in tumorigenesis remains controversial and its regulatory effects may depend upon not only cancer types, but also its interacting partners, chromatin structure, and the context in which it acts. It has been detected that YY1 was highly expressed in colorectal cancer (CRC). Intriguingly, many YY1-repressed genes exhibit tumor suppressive potential while YY1 silencing is related to chemotherapy resistance. Therefore, it is crucial to meticulously explore YY1 protein structure and the dynamic alteration of its interactome in each cancer type. This review attempts to describe the structure of YY1, summarize the mechanism that influence the expression level of YY1 and also highlight the recent advances in our understanding of regulatory insights of YY1 functions in CRC. METHODS: Related studies were identified through scoping search of PubMed, Web of science, Scopus and Emhase concerning the terms of "colorectal cancer", colorectal carcinoma" or CRC with "YY1". The retrieval strategy included title, abstract, and keywords with no language limitations. All the included articles were categorized depending on the mechanisms they explored. RESULTS: In total, 170 articles were identified for further screening. After removing the duplication, not relevant outcomes and review articles, 34 were finally included in the review. Among them, 10 articles revealed the reasons of YY1 high expression in CRC, 13 articles explored YY1 function in CRC, and 11 articles fell into both aspects. In addition, we also summarized 10 clinical trials concerning the expression and activity of YY1 in various diseases, which offers a hint for future application. CONCLUSIONS: YY1 is highly expressed in CRC and broadly recognized as an oncogenic factor during the whole course of CRC. Sporadic controversial views are raised in term of CRC treatment, reminding us that future studies should take the influence of therapeutic regimens into concern.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Humanos , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
J Exp Clin Cancer Res ; 42(1): 34, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694250

RESUMO

BACKGROUND: Metabolic reprogramming is a hallmark of various cancers. Targeting metabolic processes is a very attractive treatment for cancer. Renal cell carcinoma (RCC) is a type of metabolic disease, and the lipidomic profile of RCC is significantly altered compared with that of healthy tissue. However, the molecular mechanism underlying lipid metabolism regulation in RCC is not clear. METHODS: The XF long-chain fatty acid oxidative stress test kits were used to assess the dependence on long-chain fatty acids and mitochondrial function after knockdown TRIM21 in RCC cells. The effect of TRIM21 on the lipid content in RCC cells was determined by metabolomics analysis, Oil Red O staining, and cellular Nile red staining. qRT-PCR and western blot were used to explore the relationship between TRIM21 and lipogenesis, and then the key molecule sterol regulatory element binding transcription factor 1 (SREBF1) was identified to interact with TRIM21 by immunoprecipitation, which was also identified in an orthotopic model. Subsequently, the relevance and clinical significance of TRIM21 and SREBF1 were analyzed by The Cancer Genome Atlas (TCGA) database, and 239 tissues were collected from RCC patients. RESULTS: TRIM21 silencing attenuated the dependence of RCC cells on fatty acids, and enhanced lipid accumulation in RCC cells. TRIM21 overexpression significantly decreased lipid contents by decreasing the expression of lipogenic enzymes via ubiquitination-mediated degradation of SREBF1. SREBF1 is critical for TRIM21-mediated lipogenesis inhibition in vitro and in vivo. Moreover, TRIM21 expression is negatively correlated with SREBF1 expression, and TRIM21-SREBF1 is a reliable combinational biomarker for RCC prognosis. CONCLUSION: The findings from this study reveal a novel pathway through which TRIM21 inhibits the lipid metabolism process of RCC and shed light on the development of targeted metabolic treatment and prognosis diagnosis of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Lipogênese/genética , Carcinoma de Células Renais/genética , Ácidos Graxos/metabolismo , Neoplasias Renais/genética , Estabilidade Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(5): e2210038120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696440

RESUMO

To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer's disease.


Assuntos
RNA , Transcrição Gênica , Animais , Camundongos , Humanos , RNA/genética , Transcriptoma , Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
20.
J Med Virol ; 95(1): e28158, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114164

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 epidemic is worsening. Binding of the Spike1 protein of SARS-CoV-2 with the angiotensin-converting enzyme 2 (ACE2) receptor mediates entry of the virus into host cells. Many reports show that protein arginine methylation by protein arginine methyltransferases (PRMTs) is important for the functions of these proteins, but it remains unclear whether ACE2 is methylated by PRMTs. Here, we show that PRMT5 catalyses ACE2 symmetric dimethylation at residue R671 (meR671-ACE2). We indicate that PRMT5-mediated meR671-ACE2 promotes SARS-CoV-2 receptor-binding domain (RBD) binding with ACE2 probably by enhancing ACE2 N-glycosylation modification. We also reveal that the PRMT5-specific inhibitor GSK3326595 is able to dramatically reduce ACE2 binding with RBD. Moreover, we discovered that meR671-ACE2 plays an important role in ACE2 binding with Spike1 of the SARS-CoV-2 Omicron, Delta, and Beta variants; and we found that GSK3326595 strongly attenuates ACE2 interaction with Spike1 of the SARS-CoV-2 Omicron, Delta, and Beta variants. Finally, SARS-CoV-2 pseudovirus infection assays uncovered that PRMT5-mediated meR671-ACE2 is essential for SARS-CoV-2 infection in human cells, and pseudovirus infection experiments confirmed that GSK3326595 can strongly suppress SARS-CoV-2 infection of host cells. Our findings suggest that as a clinical phase II drug for several kinds of cancers, GSK3326595 is a promising candidate to decrease SARS-CoV-2 infection by inhibiting ACE2 methylation and ACE2-Spike1 interaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Metilação , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA