Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Food Funct ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904163

RESUMO

Eight polyprenylphenol derivatives were isolated from the wild edible mushroom Suillus granulatus, including seven novel compounds, named suillin F-L (2-8), and one previously identified compound (1). The structures of the new compounds were elucidated using HR-ESI-MS and 1D and 2D NMR data. The absolute configuration of compound 8 was assigned based on the comparison of the experimental and calculated ECD data. All isolated compounds were evaluated for their cytotoxicity against HepG2 cancer cell lines. Compounds 1 and 3-6 demonstrated significant antitumor activity compared to the positive control (cisplatin), with IC50 values ranging from 8.19 to 13.97 µM. Furthermore, DARTS assay and LC-MS/MS analysis were used to identify HSP90AA1 as the direct target of compound 5, and the interaction between compound 5 and HSP90AA1 was verified by molecular docking.

2.
Int J Gen Med ; 17: 2113-2128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766598

RESUMO

Purpose: Evidence has indicated that PDZD11 is involved in regulating adherens junction. However, the distinct effect of its aberrant expression on epithelial ovarian cancer (EOC) awaits clarification. Methods: In this study, public databases (Gene Expression Omnibus, The Cancer Genome Atlas, and The Genotype-Tissue Expression), online analysis tools (Kaplan-Meier plotter and TIMER), and data analysis methods (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and the CIBERSORT algorithm) were fully utilized to analyze the differential expression, diagnostic efficiency, prognostic significance, potential function, and correlation with immune infiltration of PDZD11. The differential expression of PDZD11 was tested by immunohistochemistry in EOC tissues (78 cases) and control tissues (37 cases). Results: Our results indicate that PDZD11 was remarkably overexpressed in EOC, which was associated with advanced cancer stages, no lymphatic metastasis status, and poor prognosis. Moreover, PDZD11 played a role in cell adhesion, cell proliferation, and immune responses. Also, PDZD11 was significantly related to the abundances of infiltrating immune cells in EOC, including neutrophils, macrophages, dendritic cells, CD8+ T cells, and CD4+ T cells, and its expression was positively co-expressed with well-known immune checkpoints, including TIGIT, TIM3, LAG3, CTLA4, and PD-1. Conclusion: These results suggest that PDZD11 could be a potential diagnostic and prognostic biomarker associated with immune infiltration in EOC, and our findings might help elucidate the function of PDZD11 in carcinogenesis.

3.
J Gynecol Oncol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38710531

RESUMO

OBJECTIVE: To investigate the association of primary tumor site with prognosis in vulvar cancer, stratified by vulvar squamous cell carcinoma (SCC) and non-SCC histological types. METHODS: This population-based retrospective study enrolled patients with vulvar cancer from the Surveillance, Epidemiology, and End Results database between January 2000 and December 2018. The primary outcome was cancer-specific survival (CSS). The prognostic difference between labium majus, labium minus and clitoris groups was investigated using Kaplan-Meier analyses and Cox proportional hazards regression analyses. RESULTS: A total of 3,465 eligible patients with vulvar cancer were included with a mean age of 54.5 years. Among the 1,076 (31.1%) patients with non-SCC, the multivariate Cox regression analyses showed that labium minus-sited disease (hazard ratio [HR]=1.85; 95% confidence interval [CI]=1.27-2.71; p=0.001) and clitoris-sited disease (HR=2.37; 95% CI=1.47-3.85; p<0.001) were significantly associated with worse CSS, compared with labium majus-sited disease. However, among the 2,389 (68.9%) patients with SCC, no significant association of primary tumor site with CSS was found (p>0.05). Kaplan-Meier analyses also showed that the primary tumor site had a significant prognostic effect in vulvar non-SCC (p<0.001) but not in vulvar SCC (p=0.330). CONCLUSION: Among vulvar non-SCC, patients with labium minus-sited disease had a significantly worse prognosis than those with labium majus-sited disease, and a significantly better prognosis than those with clitoris-sited disease. Gynecologic oncologists should consider the prognostic effect of primary tumor site in vulvar non-SCC, and make optimal, personalized treatment and surveillance strategies based on different primary tumor sites.

4.
Front Nutr ; 11: 1390256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721034

RESUMO

Edible mushrooms are an important source of nutraceuticals and for the discovery of bioactive metabolites as pharmaceuticals. In this work, six new polyphenolic metabolites suillusol A-D (1-4), suillusinoic acid (5), ethyl suillusinoate (6), were isolated from the Suillus granulatus. The structures of new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy, nuclear magnetic resonance data, and single-crystal X-ray diffraction analysis. As far as we know, compound 1 represents an unprecedented type of natural product and compound 3 represents a new type of polyphenol fungal pigment, which may be biosynthetically related to thelephoric acid. The cytotoxicity against HepG2 cells of the new compounds were also evaluated. Compound 2 demonstrate significant inhibitory activity against HepG2 cells with IC50 values of 10.85 µM, surpassing that of positive control cisplatin. Moreover, compound 1 and 3 also exhibited moderate cytotoxic activity with their IC50 values measured at 35.60 and 32.62 µM, respectively. Our results indicate that S. granulatus is a rich source of chemical constituents that may provide new lead compounds for the development of anticancer agents.

5.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706262

RESUMO

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Assuntos
Apoptose , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Platina/uso terapêutico , Platina/farmacologia
6.
Cell Biol Int ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706122

RESUMO

Cisplatin is commonly used for the chemotherapy of tongue squamous cell carcinoma (TSCC); however, adverse side effects and drug resistance impact its therapeutic efficacy. Capsaicin is an active ingredient in chili peppers that exerts antitumor effects, whether it exerts antitumor effects on cisplatin-resistant cells remains unknown. Therefore, in this study, we investigated the effect of capsaicin on cisplatin resistance in TSCC cells and explored the underlying mechanisms. A cisplatin-resistant TSCC cell line was established by treated with increasing cisplatin concentrations. Combined treatment with cisplatin and capsaicin decreased the glucose consumption and lactate dehydrogenase activity and increased the adenosine triphosphate production both in vitro and in vivo, suggesting the inhibition of the Warburg effect. Moreover, this combined treatment induced cell apoptosis and significantly upregulated the levels of proapoptotic proteins, such as Bax, cleaved caspase-3, -7, and -9, and apoptosis-inducing factor. In contrast, levels of the antiapoptotic protein, Bcl-2, were downregulated. Additionally, LKB1 and AMPK activities were stimulated, whereas those of AKT and mTOR were suppressed. Notably, AMPK knockdown abolished the inhibitory effects of capsaicin and cisplatin on the AKT/mTOR signaling pathway and Warburg effect. Overall, combined treatment with capsaicin and cisplatin reversed cisplatin resistance by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Our findings suggest combination therapy with capsaicin and cisplatin as a potentially novel strategy and highlight capsaicin as a promising adjuvant drug for TSCC treatment.

7.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801084

RESUMO

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Resistência à Insulina , Polissacarídeos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Células Hep G2 , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/sangue , Insulina/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Agaricales/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Estreptozocina
8.
Artigo em Inglês | MEDLINE | ID: mdl-38789637

RESUMO

Gallbladder cancer (GBC) is a common malignant cancer in the biliary system, which poses a serious threat to human health. It is urgent to explore ideal drugs for the treatment of GBC. Matrine is the main active ingredient of Sophora flavescentis, with a wide range of biological activities encompassing anti-inflammatory, antiviral, immunomodulatory, and anti-tumor. However, the underlying mechanism by which Matrine treats GBC is still unclear. The purpose of this study is to investigate the anti-tumor effects of Matrine on GBC in vivo and in vitro and to clarify the potential regulatory mechanisms. Here, we found that Matrine had a significant killing effect on GBC through CCK8 and flow cytometry, including arrest of cell cycle, inhibition of GBC cell, and induction of apoptosis. Further in vivo studies confirmed the inhibitory effect of Matrine on tumor growth in NOZ xenografted nude mouse. At the same time, Matrine also significantly suppressed the migration and invasion of GBC cells through scratch and Transwell experiments. In addition, by detecting the mRNA and protein levels of epithelial-mesenchymal transition (EMT) and matrix metalloproteinases, Matrine furtherly substantiated the inhibitory role on invasion and migration of GBC. From a mechanistic perspective, network pharmacology analysis suggests that the potential targets of Matrine in the treatment of GBC are enriched in the PI3K/AKT signaling pathway. Subsequently, Matrine effectively decreased the abundance of p-PI3K and p-AKT protein in vivo and in vitro. More importantly, PI3K activator (740 Y-P) antagonized the anti-tumor effect of Matrine, while PI3K inhibitor (LY294002) increased the sensitivity of Matrine for GBC. Based on the above findings, we conclude that Matrine inhibits the invasion and migration of GBC by regulating PI3K/AKT signaling pathway. Our results indicate the crucial role and regulatory mechanism of Matrine in suppressing the growth of GBC, which provides a theoretical basis for Matrine to be a candidate drug for the treatment and research of GBC.

9.
BMC Surg ; 24(1): 117, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643065

RESUMO

BACKGROUND: This study investigated the clinical application of the indocyanine green (ICG) fluorescence navigation technique in bile duct identification during laparoscopic common bile duct exploration (LCBDE) for complex hepatolithiasis. METHODS: Eighty patients with complex hepatolithiasis were admitted to our department between January 2022 and June 2023 and randomly divided into control and observation groups. The control group underwent conventional LCBDE, while the observation group underwent LCBDE guided by ICG fluorescence. RESULTS: Intraoperatively, the observation group had shorter operation and search times for the common bile duct (CBD), as well as reduced intraoperative blood loss and fewer complications, such as conversion to laparotomy and various injuries (gastroduodenal, colon, pancreatic, and vascular) than the control group, with statistical significance (P < 0.05). Postoperatively, the observation group had lower rates of postoperative bile leakage, abdominal infection, postoperative hemorrhage, and residual stone than the control group. Additionally, the observation group demonstrated significantly shorter times for resuming flatus, removal of the abdominal drainage tube, and hospitalization than the control group, with statistical significance (P < 0.05). CONCLUSION: ICG fluorescence navigation technology effectively visualizes the bile duct, improves its identification rate, shortens the operation time, prevents biliary tract injury, and reduces the occurrence of complications.


Assuntos
Coledocolitíase , Laparoscopia , Litíase , Hepatopatias , Humanos , Coledocolitíase/cirurgia , Ducto Colédoco/cirurgia , Verde de Indocianina , Laparoscopia/métodos , Tempo de Internação , Litíase/cirurgia , Hepatopatias/cirurgia , Estudos Retrospectivos
10.
J Virol ; 98(5): e0025324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591878

RESUMO

Coronavirus (CoV) 3C-like protease (3CLpro) is essential for viral replication and is involved in immune escape by proteolyzing host proteins. Deep profiling the 3CLpro substrates in the host proteome extends our understanding of viral pathogenesis and facilitates antiviral drug discovery. Here, 3CLpro from porcine epidemic diarrhea virus (PEDV), an enteropathogenic CoV, was used as a model which to identify the potential 3CLpro cleavage motifs in all porcine proteins. We characterized the selectivity of PEDV 3CLpro at sites P5-P4'. We then compiled the 3CLpro substrate preferences into a position-specific scoring matrix and developed a 3CLpro profiling strategy to delineate the protein substrate landscape of CoV 3CLpro. We identified 1,398 potential targets in the porcine proteome containing at least one putative cleavage site and experimentally validated the reliability of the substrate degradome. The PEDV 3CLpro-targeted pathways are involved in mRNA processing, translation, and key effectors of autophagy and the immune system. We also demonstrated that PEDV 3CLpro suppresses the type 1 interferon (IFN-I) cascade via the proteolysis of multiple signaling adaptors in the retinoic acid-inducible gene I (RIG-I) signaling pathway. Our composite method is reproducible and accurate, with an unprecedented depth of coverage for substrate motifs. The 3CLpro substrate degradome establishes a comprehensive substrate atlas that will accelerate the investigation of CoV pathogenicity and the development of anti-CoV drugs.IMPORTANCECoronaviruses (CoVs) are major pathogens that infect humans and animals. The 3C-like protease (3CLpro) encoded by CoV not only cleaves the CoV polyproteins but also degrades host proteins and is considered an attractive target for the development of anti-CoV drugs. However, the comprehensive characterization of an atlas of CoV 3CLpro substrates is a long-standing challenge. Using porcine epidemic diarrhea virus (PEDV) 3CLpro as a model, we developed a method that accurately predicts the substrates of 3CLpro and comprehensively maps the substrate degradome of PEDV 3CLpro. Interestingly, we found that 3CLpro may simultaneously degrade multiple molecules responsible for a specific function. For instance, it cleaves at least four adaptors in the RIG-I signaling pathway to suppress type 1 interferon production. These findings highlight the complexity of the 3CLpro substrate degradome and provide new insights to facilitate the development of anti-CoV drugs.


Assuntos
Proteases 3C de Coronavírus , Vírus da Diarreia Epidêmica Suína , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Células HEK293 , Interferon Tipo I/metabolismo , Proteólise , Proteoma/metabolismo , Especificidade por Substrato , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral
11.
Postgrad Med ; 136(3): 278-291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635593

RESUMO

Gallbladder cancer is a common type of biliary tract tumor. Optimal management for early stage cases typically involves radical excision as the primary treatment modality. Various surgical techniques, including laparoscopic, robotic, and navigational surgery, have demonstrated favorable clinical outcomes in radical gallbladder excision. Unfortunately, most patients are ineligible for surgical intervention because of the advanced stage of the disease upon diagnosis. Consequently, non-surgical interventions, such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy, have become the mainstay of treatment for patients in advanced stages. This review focuses on elucidating various surgical techniques as well as advancements in immunotherapy and targeted therapy in the context of recent advancements in gallbladder cancer research.


Assuntos
Neoplasias da Vesícula Biliar , Imunoterapia , Humanos , Neoplasias da Vesícula Biliar/terapia , Neoplasias da Vesícula Biliar/cirurgia , Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Colecistectomia/métodos
12.
Phytomedicine ; 129: 155661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677269

RESUMO

BACKGROUND: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.


Assuntos
Apoptose , Proliferação de Células , Neoplasias da Vesícula Biliar , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Nus , Fator 2 Relacionado a NF-E2 , Fenantrenos , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Furanos/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Fenantrenos/farmacologia , Fosforilação/efeitos dos fármacos , Quinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Salvia miltiorrhiza/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Gastrointest Oncol ; 15(1): 190-202, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482211

RESUMO

Background: The long non-coding RNA (lncRNA) prostate cancer-associated transcript 6 (PCAT6) has been studied in many cancers, yet its relationship with colorectal cancer (CRC) remains poorly defined. Here, we conducted an analysis of The Cancer Genome Atlas (TCGA) database to better clarify the role of PCAT6 in this cancer type. Methods: Wilcoxon rank-sum tests were utilized to assess relative levels of PCAT6 in CRC tumors and normal tissues, while logistic regression analyses were utilized to compare the relationships between PCAT6 levels and clinicopathological findings. Kaplan-Meier curves and Cox regression analyses were used to gauge correlations between PCAT6 and patient survival outcomes, while the biological roles of this lncRNA were investigated via a gene set enrichment analysis (GSEA) approach. The expression level of PCAT6 in CRC cell lines was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: PCAT6 levels were significantly correlated with CRC patient lymph node metastasis (N) stage [odds ratio (OR) =1.8 for N1 & N2 vs. N0], lymphatic invasion [OR =1.9 for yes vs. no), distant metastasis (M stage) (OR =2.1 for M1 vs. M0), carcinoembryonic antigen (CEA) level (OR =1.9 for >5 vs. ≤5), perineural invasion (OR =1.9 for yes vs. no), pathologic stage (OR =1.9 for stage III/IV vs. stage I/II), and neoplasm type (OR =2.1 for rectal adenocarcinoma vs. colon adenocarcinoma) (all P<0.05). CRC patients expressing higher PCAT6 levels exhibited poorer survival outcomes than those expressing low levels of this lncRNA (P=0.017), and in univariate analyses, higher PCAT6 levels were linked to worse overall survival [hazard ratio (HR) =1.540; 95% confidence interval (CI): 1.079-2.199; P=0.017], with this relationship also being preserved in a multivariate analysis (HR =6.892; 95% CI: 1.713-27.727, P=0.007). GSEA revealed high PCAT6 expression to be linked to differential DNA methylation enrichment, with high PCAT6 levels being associated with changes in base excision repair, cellular senescence, G2/M DNA damage checkpoint, chromatin-modifying enzyme, and gene silencing by RNA activity. The high expression of lncRNA PCAT6 in CRC cell lines was demonstrated by PCR experiments. Conclusions: PCAT6 represents a promising prognostic biomarker of poor CRC patient survival outcomes, with DNA methylation and RNA-mediated gene silencing being potentially promising mechanistic pathways whereby this lncRNA may shape patient outcomes.

14.
ACS Macro Lett ; 13(3): 315-321, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38382063

RESUMO

Carbon dioxide (CO2), as a renewable and nontoxic C1 feedstock, has been recognized as an ideal comonomer to prepare sustainable materials. In this regard, substantial focus has been dedicated to the ring-opening copolymerization of CO2 and epoxides, which results in the creation of aliphatic polycarbonates in most cases. Here, we report an unprecedented strategy to synthesize functional and degradable polyester-co-polyethers from CO2, butadiene, and epoxides via a CO2/butadiene-derived δ-valerolactone intermediate (EVP). Utilizing a chromium salen complex as the catalyst, the copolymerization of EVP and epoxides was successfully achieved to produce CO2/butadiene/epoxide terpolymers. The obtained polyester-co-polyethers with varied 39-93 mol % EVP content (equal to 18-28 wt % CO2 incorporation) show high thermal stability, tunable glass-transition temperatures, on-demand functionality, and good chemical degradability. This method extends the potential to access functional CO2-based polymers.

15.
Biochem Biophys Rep ; 37: 101646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38333050

RESUMO

Adeno-associated virus (AAV) vectors have been widely used in therapy to treat hereditary retinal diseases. But its transduction efficiency by intravitreal injection still needs to be improved. In this study, we investigated the transduction efficiency of AAV-DJ (K137R)-GFP in different retinal cells of normal mice, as well as the therapy effection of AAV-DJ (K137R)-Rs1 on retinal function and structure in Rs1-KO mice. The intravitreal injection of AAV-DJ (K137R)-GFP demonstrated that this vector transduced cells in all layers of the retina, including the inner nuclear layer and photoreceptor layer. The intravitreal injection of AAV-DJ (K137R)-Rs1 found that 3 months post-injection of this vector improved retinal function and structure in Rs1-KO mice. Our conclusion is that AAV-DJ (K137R) vector can efficiently and safely penetrate the inner limiting membrane and transduce different layers of retinal cells in the long term, as well as being able to continuously and efficiently express target therapeutic proteins, making it a candidate therapeutic vector for X-linked retinoschisis (XLRS).

16.
Ecotoxicol Environ Saf ; 272: 116080, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350215

RESUMO

BACKGROUND: Serum prostate-specific antigen (PSA) is a primary metric for diagnosis and prognosis of prostate cancer (PCa). Exposure to heavy metals, such as lead, cadmium, mercury, and zinc can impact PSA levels in PCa patients. However, it is unclear whether this effect also occurs in men without PCa, which may lead to the overdiagnosis of PCa. METHOD: Data on a total of 5089 American men who had never been diagnosed with PCa were obtained from the National Health and Nutrition Examination Survey performed from 2003-2010. The relationship between serum PSA levels (dependent variable) and concentrations of lead (µmol/L), cadmium (nmol/L), and mercury (µmol/L) were investigated with dietary zinc intake being used as a potential modifier or covariate in a weighted linear regression model and a generalized additive model. A series of bootstrapping analyses were performed to evaluate sensitivity and specificity using these models. RESULTS: Regression analyses suggested that, in general, lead, cadmium, or mercury did not show an association with PSA levels, which was consistent with the results of the bootstrapping analyses. However, in a subgroup of participants with a high level of dietary zinc intake (≥14.12 mg/day), a significant positive association between cadmium and serum PSA was identified (1.06, 95% CI, P = 0.0268, P for interaction=0.0249). CONCLUSIONS: With high-level zinc intake, serum PSA levels may rise in PCa-free men as the exposure to cadmium increases, leading to a potential risk of an overdiagnosis of PCa and unnecessary treatment. Therefore, environmental variables should be factored in the current diagnostic model for PCa that is solely based on PSA measurements. Different criteria for PSA screening are necessary based on geographical variables. Further investigations are needed to uncover the biological and biochemical relationship between zinc, cadmium, and serum PSA levels to more precisely diagnose PCa.


Assuntos
Mercúrio , Metais Pesados , Masculino , Humanos , Estados Unidos , Antígeno Prostático Específico , Cádmio , Inquéritos Nutricionais , Zinco
17.
J Virol ; 98(3): e0000324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353538

RESUMO

The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Autofagia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/metabolismo , Interferons/metabolismo , Microtúbulos/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Suínos , Doenças dos Suínos/virologia
18.
Eur J Surg Oncol ; 50(3): 107975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295548

RESUMO

BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a rare pathological type of ovarian cancer with a poor prognosis, and lymphadenectomy is controversial in patients with OCCC. The objective of this study was to evaluate the impact of lymphadenectomy on the prognosis of patients with OCCC. METHODS: In this retrospective study, we collected data from the Surveillance, Epidemiology and End Results (SEER) database and institutional registries in China. The SEER cohort included 1777 women diagnosed with OCCC between 2010 and 2019, while the Chinese cohort included 199 women diagnosed between April 2004 and April 2021. Recurrence-free survival (RFS) and overall survival (OS) were studied using Kaplan-Meier curve and Cox regression analysis. We also employed propensity score matching (PSM) to adjust for baseline imbalances between the lymphadenectomy group and the no-lymphadenectomy group. RESULTS: Multivariate cox regression analysis showed that lymphadenectomy was not associated with better overall survival (OS) in either early (hazard ratio [HR] 0.84[0.50-1.43], p = 0.528) or advanced (HR 0.78[0.50-1.21], p = 0.270) patients in the SEER cohort after PSM. Additionally, in the Kaplan-Meier curve analysis, lymphadenectomy did not significantly improve OS in both early (p = 0.28) and advanced (p = 0.49) patients in the SEER cohort after PSM. Similarly, in the Chinese cohort, lymphadenectomy had no significant effect on OS (early p = 0.22; advanced p = 0.61) or RFS (early p = 0.18; advanced p = 0.83) in both early and advanced patients. CONCLUSION: In completely homogeneous groups, lymphadenectomy in women diagnosed with OCCC had no effect on either recurrence-free survival or overall survival compared to patients without lymphadenectomy.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Humanos , Feminino , Estudos Retrospectivos , Estadiamento de Neoplasias , Prognóstico , Sistema de Registros , Excisão de Linfonodo , Adenocarcinoma de Células Claras/cirurgia , Adenocarcinoma de Células Claras/metabolismo
19.
Arch Biochem Biophys ; 752: 109891, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218360

RESUMO

Endometrial cancer (EC) is a common gynecological malignancy, and advanced-stage or recurrent EC is associated with a high mortality rate owing to the ineffectiveness of currently available treatments. FK506-binding protein 38 (FKBP38) is a member of the immunophilin family and inhibits melanoma and breast cancer cell metastasis. However, the functions of FKBP38 and its potential mechanism in EC remain unclear. Herein, we analyzed the expression levels of FKBP38 in EC cells and found that the FKBP38 expression was high in Ishikawa cells, and low in AN3CA cells, traditionally considered a low grade and a high grade cell line, respectively, in pathology classification. Moreover, FKBP38 inhibited cell proliferation, migration and invasion in EC cells, FKBP38 knockdown significantly promoted tumor growth of Ishikawa cells in a subcutaneous xenograft model and increased the number of lung metastases of Hec-1-A cells in a metastatic mouse model. Furthermore, FKBP38 suppressed several target proteins of epithelial-to-mesenchymal transition (EMT) and reduced the phosphorylation of ribosomal S6 protein (S6), eukaryotic initiation factor 4E-binding protein 1 (4EBP-1), indicating the potent inhibition of the mammalian target of rapamycin (mTOR) pathway. Meanwhile, the inhibition of mTOR neutralized the elevation of EC cell proliferation, migration and invasion after FKBP38 knockdown. In summary, FKBP38 would exert a tumor-suppressing role by modulating the mTOR pathway. Our results indicate that FKBP38 may be considered as a factor of EC metastasis and a new target for EC therapeutic intervention.


Assuntos
Neoplasias do Endométrio , Proteínas de Ligação a Tacrolimo , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Endométrio/metabolismo , Mamíferos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA