Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Am J Cancer Res ; 14(3): 996-1014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590422

RESUMO

RNASEH1-AS1, a long non-coding RNA (lncRNA) divergently transcribed from the antisense strand of its neighboring protein-coding gene ribonuclease H1 (RNASEH1), has recently been demonstrated to be involved in tumor progression. However, the association between RNASEH1-AS1 and hepatocellular carcinoma (HCC) remains unclear. In the present study, first, the expression of RNASEH1-AS1 in HCC and its correlation with clinicopathological features, prognosis, diagnosis, immune cell infiltration of HCC patients was inspected using relevant R packages based on The Cancer Genome Atlas (TCGA) data. RNASEH1-AS1 was found to be up-regulated in most cancer types, including HCC, and its overexpression was significantly associated with histologic grade and AFP level as well as poor prognosis, and was an independent risk factor affecting overall survival with good diagnostic and prognostic values for HCC. RNASEH1-AS1 was inversely associated with the infiltration of most immune cell types, including plasmacytoid dendritic cells (pDC), B cells and neutrophils. Second, a total of 1109 positively co-expressed genes (PCEGs) of RNASEH1-AS1 were screened out in HCC by correlation analysis in batches (|Spearman's r| >0.4 and adjusted P value <0.01). GO and KEGG enrichment analysis indicated that PCEGs of RNASEH1-AS1 were mainly related to RNA processing, ribosome biogenesis, transcription and histone acetylation. The top 10 hub genes (EIF4A3, WDR43, WDR12, DKC1, NAT10, UTP18, DDX18, BYSL, DDX10, PDCD11) were identified by constructing the protein-protein interaction (PPI) network, and they were all highly expressed in HCC and positively correlated with histological grade. Third, a risk model was constructed based on four RNASEH1-AS1-related hub genes (EIF4A3, WDR12, DKC1, and NAT10) with good prognostic predictive potential via univariate Cox and the least absolute selection operator (LASSO) regression analysis. Fourth, experimental validation revealed that RNASEH1-AS1 was significantly elevated in HCC tissues and several cell lines, and its knockdown could suppress the proliferation, migration, and invasion of HCC cells. Finally, mechanistic studies demonstrated that the stability of RNASEH1-AS1 could be regulated by DKC1 via their direct interaction. Taken together, RNASEH1-AS1 may serve as a potential prognostic and diagnostic biomarker and oncogenic lncRNA for HCC.

3.
Glob Med Genet ; 10(4): 348-356, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046278

RESUMO

Objectives Spleen is involved in multiple diseases, the role of the spleen and spleen-derived factors in hepatocellular carcinoma (HCC) is still not clarified. Methods In the current study, a murine H22 orthotopic hepatoma model was established. Three groups were divided: normal mice, tumor-bearing mice with spleen-preserving, and tumor-bearing mice with splenectomy. Spleen and tumor weights were recorded by weeks 1 and 2. The proportion of myeloid-derived suppressor cell (MDSC) in peripheral blood and tumor tissue was detected using flow cytometry. Protein chip assay was used to compare the differential cytokines between normal liver supernatant and tumor supernatant. The common upregulated cytokines both in spleen and tumor were focused and analyzed using gene expression profiling interactive analysis (GEPIA) database. Enzyme-linked immunosorbent assay was performed to verify the chip result, and to examine CCL9 expression before and after splenectomy. Spleen MDSC was sorted using flow cytometry, and chemotaxis assay was performed to demonstrate whether CCL9 attracted spleen MDSC. Results The spleen enlarged during tumor progression, and compared with splenectomy group, there were faster tumor growth, shorter survival time, and higher proportions of MDSC in spleen-preserving group. Protein chip assay and GEPIA database revealed CCL9 was the most promising chemokine involved in HCC upregulated both in spleen and tumor tissue. CCL9 attracted MDSC in vitro, the level of CCL9 in tumor tissue was downregulated, and the percentage of MDSC was decreased after splenectomy. Conclusion The results demonstrate that CCL9 may be derived from spleen; it facilitated HCC growth via the chemotaxis of MDSC, targeting CCL9 may be a promising strategy in HCC treatment.

4.
J Zhejiang Univ Sci B ; 24(12): 1165-1173, 2023 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38057273

RESUMO

Eukaryotic organisms constantly face a wide range of internal and external factors that cause damage to their DNA. Failure to accurately and efficiently repair these DNA lesions can result in genomic instability and the development of tumors (Canela et al., 2017). Among the various forms of DNA damage, DNA double-strand breaks (DSBs) are particularly harmful. Two major pathways, non-homologous end joining (NHEJ) and homologous recombination (HR), are primarily responsible for repairing DSBs (Katsuki et al., 2020; Li and Yuan, 2021; Zhang and Gong, 2021; Xiang et al., 2023). NHEJ is an error-prone repair mechanism that simply joins the broken ends together (Blunt et al., 1995; Hartley et al., 1995). In contrast, HR is a precise repair process. It involves multiple proteins in eukaryotic cells, with the RAD51 recombinase being the key player, which is analogous to bacterial recombinase A (RecA) (Shinohara et al., 1992). The central event in HR is the formation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments that facilitate homology search and DNA strand invasion, ultimately leading to the initiation of repair synthesis (Miné et al., 2007; Hilario et al., 2009; Ma et al., 2017).


Assuntos
Proteínas de Ligação a DNA , Reparo de DNA por Recombinação , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Dano ao DNA , DNA
5.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958405

RESUMO

DHX37, a member of the DEAD/H-box RNA helicase family, has been implicated in various diseases, including tumors. However, the biological characteristics and prognostic significance of DHX37 in HCC remain unclear. In this study, we use R software 3.6.3 and multiple bioinformatics analysis tools, such as GDSC, HPA, STRING, TISCH, and TIMER2, to analyze the characterization and function of DHX37 in HCC. In addition, Western blot (WB) and immunohistochemistry (IHC) based on clinical samples validated some of the findings. DHX37 was more highly expressed in HCC samples compared to adjacent non-tumor tissues. Higher DHX37 expression is correlated with various clinicopathological characteristics in HCC, including AFP, adjacent hepatic tissue inflammation, histologic grade, T stage, and pathologic stage. Survival analysis revealed that the high DHX37 group had significantly shorter overall survival (OS), progress-free interval (PFI), and disease-specific survival (DSS) compared to the low DHX37 group. By analyzing the correlation between DHX37 and the IC50 of chemotherapeutic drugs, the results showed that DHX37 expression level was negatively correlated with the IC50 of 11 chemotherapeutic drugs. Further analysis indicated that DHX37 and its co-expressed genes may play important roles in activating the cell cycle, DNA repair, chemokine signaling pathways, and regulating the immune response, which leads to a poor prognosis in HCC. High expression of DHX37 is an independent risk factor for poor prognosis in HCC, and DHX37 is expected to be a potential target to inhibit tumor progression. Targeting DHX37 may enhance chemotherapeutic drug sensitivity and immunotherapeutic efficacy in HCC.

7.
J Hepatocell Carcinoma ; 10: 1237-1256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533602

RESUMO

Purpose: HOX cluster-embedded long noncoding RNAs (HOX-lncRNAs) have been shown to be tightly related to hepatocellular carcinoma (HCC). However, the potential biological roles and underlying molecular mechanism of HOX-lncRNAs in HCC largely remains to be elucidated. Methods: The expression signature of eighteen HOX-lncRNAs in HCC cell lines were measured by qRT-PCR. HOXD-AS2 expression and its clinical significance in HCC was investigated by bioinformatics analysis utilizing the TCGA data. Subcellular localization of HOXD-AS2 in HCC cells was observed by RNA-FISH. Loss­of­function experiments in vitro and in vivo were conducted to probe the roles of HOXD-AS2 in HCC. Potential HOXD-AS2-controlled genes and signaling pathways were revealed by RNA-seq. Rescue experiments were performed to validate that SMYD3 mediates HOXD-AS2 promoting HCC progression. The positive feedback loop of HOXD-AS2 and SMYD3 was identified by luciferase reporter assay and ChIP-qPCR. Results: HOXD-AS2 was dramatically elevated in HCC, and its up-regulation exhibited a positive association with aggressive clinical features (T stage, pathologic stage, histologic grade, AFP level, and vascular invasion) and unfavorable prognosis of HCC patients. HOXD-AS2 was distributed both in the nucleus and the cytoplasm of HCC cells. Knockdown of HOXD-AS2 restrained the proliferation, migration, invasion of HCC cells in vitro, as well as tumor growth in subcutaneous mouse model. Transcriptome analysis demonstrated that SMYD3 expression and activity of MEK/ERK pathway were impaired by silencing HOXD-AS2 in HCC cells. Rescue experiments revealed that SMYD3 as downstream target mediated oncogenic functions of HOXD-AS2 in HCC cells through altering the expression of cyclin B1, cyclin E1, MMP2 as well as the activity of MEK/ERK pathway. Additionally, HOXD-AS2 was uncovered to be positively regulated at transcriptional level by its downstream gene of SMYD3. Conclusion: HOXD-AS2, a novel oncogenic HOX-lncRNA, facilitates HCC progression by forming a positive feedback loop with SMYD3 and activating the MEK/ERK pathway.

8.
Cell Death Dis ; 14(8): 512, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558663

RESUMO

Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.


Assuntos
Mieloma Múltiplo , Fosforilação Oxidativa , Humanos , Metilação , Mieloma Múltiplo/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , NADH Desidrogenase/metabolismo
9.
Ecotoxicol Environ Saf ; 263: 115263, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473705

RESUMO

The excessive use of chemical herbicides has resulted in evolution of herbicide-resistant weeds. Cytochrome P450 monooxygenases (P450s) are vital detoxification enzymes for herbicide-resistant weeds. Herein, we confirmed a resistant (R) Polypogon fugax population showing resistance to quizalofop-p-ethyl, acetolactate synthase (ALS)-inhibiting herbicide pyroxsulam, and several other ACCase (acetyl-CoA carboxylase)-inhibiting herbicides. Molecular analysis revealed no target-site gene mutations in the R population. Foliar spraying with malathion clearly reversed the quizalofop-p-ethyl phytotoxicity. Higher level of quizalofop-p-ethyl degradation was confirmed in the R population using HPLC analysis. Subsequently, RNA-Seq transcriptome analysis indicated that the overexpression of CYP89A2 gene appeared to be responsible for reducing quizalofop-p-ethyl phytotoxicity. The molecular docking results supported a metabolic effect of CYP89A2 protein on most herbicides tested. Furthermore, we found that low doses of herbicides stimulated the rhizosphere enzyme activities in P. fugax and the increase of rhizosphere dehydrogenase of R population may be related to its resistance mechanism. In summary, our research has shown that metabolic herbicide resistance mediated by CYP89A2, contributes to quizalofop-p-ethyl resistance in P. fugax.


Assuntos
Herbicidas , Herbicidas/toxicidade , Simulação de Acoplamento Molecular , Rizosfera , Poaceae/metabolismo , Resistência a Herbicidas/genética , Proteínas de Plantas/metabolismo
10.
ACS Appl Mater Interfaces ; 15(21): 25437-25451, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37200589

RESUMO

Traditional treatments for hepatocellular carcinoma (HCC) still lack effectiveness. Recently, the combined mode of chemodynamic therapy (CDT) and photothermal therapy (PTT) has shown great potential against HCC. However, insufficient Fenton reaction rates and hyperthermia-induced heat shock responses greatly impair their efficiency, hindering their further clinical application. Here, we constructed a cascade-amplified PTT/CDT nanoplatform by coating an IR780-embedded red blood cell membrane on glucose oxidase (GOx)-loaded Fe3O4 nanoparticles for effective HCC treatment. On the one hand, the nanoplatform interfered with glucose metabolism through the action of GOx to reduce the synthesis of ATP, which reduced the expression of heat shock proteins, thereby sensitizing the IR780-mediated PTT. On the other hand, hydrogen peroxide generated during GOx catalysis and the thermal effect of PTT accelerated the Fe3O4-mediated Fenton reaction, realizing enhanced CDT. Consequently, the sensitized PTT and enhanced CDT for HCC management could be simultaneously achieved by interfering with glucose metabolism, providing an alternative strategy for the effective treatment of tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Terapia Fototérmica , Neoplasias Hepáticas/tratamento farmacológico , Catálise , Glucose , Glucose Oxidase , Peróxido de Hidrogênio , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
12.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883567

RESUMO

Collectin-11 (CL-11) is a recently described soluble C-type lectin that has distinct roles in embryonic development, host defence, autoimmunity, and fibrosis. Here we report that CL-11 also plays an important role in cancer cell proliferation and tumor growth. Melanoma growth was found to be suppressed in Colec11-/- mice in a s.c. B16 melanoma model. Cellular and molecular analyses revealed that CL-11 is essential for melanoma cell proliferation, angiogenesis, establishment of more immunosuppressive tumor microenvironment, and the reprogramming of macrophages to M2 phenotype within melanomas. In vitro analysis revealed that CL-11 can activate tyrosine kinase receptors (EGFR, HER3) and ERK, JNK, and AKT signaling pathways and has a direct stimulatory effect on murine melanoma cell proliferation. Furthermore, blockade of CL-11 (treatment with L-fucose) inhibited melanoma growth in mice. Analysis of open data sets revealed that COLEC11 gene expression is upregulated in human melanomas and that high COLEC11 expression has a trend toward poor survival. CL-11 also had direct stimulatory effects on human tumor cell proliferation in melanoma and several other types of cancer cells in vitro. Overall, our findings provide the first evidence to our knowledge that CL-11 is a key tumor growth-promoting protein and a promising therapeutic target in tumor growth.


Assuntos
Proliferação de Células , Colectinas , Melanoma Experimental , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Autoimunidade , Proliferação de Células/genética , Proliferação de Células/fisiologia , Colectinas/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Proteínas de Neoplasias , Receptores Proteína Tirosina Quinases , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
13.
J Appl Clin Med Phys ; 24(7): e13964, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929569

RESUMO

BACKGROUND: Automatically assessing the malignant status of lung nodules based on CTscan images can help reduce the workload of radiologists while improving their diagnostic accuracy. PURPOSE: Despite remarkable progress in the automatic diagnosis of pulmonary nodules by deep learning technologies, two significant problems remain outstanding. First, end-to-end deep learning solutions tend to neglect the empirical (semantic) features accumulated by radiologists and only rely on automatic features discovered by neural networks to provide the final diagnostic results, leading to questionable reliability, and interpretability. Second, inconsistent diagnosis between radiologists, a widely acknowledged phenomenon in clinical settings, is rarely examined and quantitatively explored by existing machine learning approaches. This paper solves these problems. METHODS: We propose a novel deep neural network called MS-Net, which comprises two sequential modules: A feature derivation and initial diagnosis module (FDID), followed by a diagnosis refinement module (DR). Specifically, to take advantage of accumulated empirical features and discovered automatic features, the FDID model of MS-Net first derives a range of perceptible features and provides two initial diagnoses for lung nodules; then, these results are fed to the subsequent DR module to refine the diagnoses further. In addition, to fully consider the individual and panel diagnosis opinions, we propose a new loss function called collaborative loss, which can collaboratively optimize the individual and her peers' opinions to provide a more accurate diagnosis. RESULTS: We evaluate the performance of the proposed MS-Net on the Lung Image Database Consortium image collection (LIDC-IDRI). It achieves 92.4% of accuracy, 92.9% of sensitivity, and 92.0% of specificity when panel labels are the ground truth, which is superior to other state-of-the-art diagnosis models. As a byproduct, the MS-Net can automatically derive a range of semantic features of lung nodules, increasing the interpretability of the final diagnoses. CONCLUSIONS: The proposed MS-Net can provide an automatic and accurate diagnosis of lung nodules, meeting the need for a reliable computer-aided diagnosis system in clinical practice.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Radiologistas , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
14.
J Adv Res ; 47: 151-162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35842187

RESUMO

INTRODUCTION: The anti-cancer medication doxorubicin (Dox) is largely restricted in clinical usage due to its significant cardiotoxicity. The only medication approved by the FDA for Dox-induced cardiotoxicity is dexrazoxane, while it may reduce the sensitivity of cancer cells to chemotherapy and is restricted for use. There is an urgent need for the development of safe and effective medicines to alleviate Dox-induced cardiotoxicity. OBJECTIVES: The objective of this study was to determine whether Paeonol (Pae) has the ability to protect against Dox-induced cardiotoxicity and if so, what are the underlying mechanisms involved. METHODS: Sprague-Dawley rats and primary cardiomyocytes were used to create Dox-induced cardiotoxicity models. Pae's effects on myocardial damage, mitochondrial function, mitochondrial dynamics and signaling pathways were studied using a range of experimental methods. RESULTS: Pae enhanced Mfn2-mediated mitochondrial fusion, restored mitochondrial function and cardiac performance both in vivo and in vitro under the Dox conditions. The protective properties of Pae were blunted when Mfn2 was knocked down or knocked out in Dox-induced cardiomyocytes and hearts respectively. Mechanistically, Pae promoted Mfn2-mediated mitochondria fusion by activating the transcription factor Stat3, which bound to the Mfn2 promoter in a direct manner and up-regulated its transcriptional expression. Furthermore, molecular docking, surface plasmon resonance and co-immunoprecipitation studies showed that Pae's direct target was PKCε, which interacted with Stat3 and enabled its phosphorylation and activation. Pae-induced Stat3 phosphorylation and Mfn2-mediated mitochondrial fusion were inhibited when PKCε was knocked down. Furthermore, Pae did not interfere with Dox's antitumor efficacy in several tumor cells. CONCLUSION: Pae protects the heart against Dox-induced damage by stimulating mitochondrial fusion via the PKCε-Stat3-Mfn2 pathway, indicating that Pae might be a promising therapeutic therapy for Dox-induced cardiotoxicity while maintaining Dox's anticancer activity.


Assuntos
Cardiotoxicidade , Dinâmica Mitocondrial , Ratos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Doxorrubicina/efeitos adversos , Miócitos Cardíacos , Hidrolases/metabolismo , Hidrolases/farmacologia
15.
Hepatology ; 77(5): 1612-1629, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098707

RESUMO

BACKGROUND AND AIMS: Monocyte-derived macrophages (MoMFs), a dominant population of hepatic macrophages under inflammation, play a crucial role in liver fibrosis progression. The spleen serves as an extra monocyte reservoir in inflammatory conditions; however, the precise mechanisms of involvement of the spleen in the pathogenesis of liver fibrosis remain unclear. APPROACH AND RESULTS: By splenectomy and splenocyte transfusion, it was observed that splenic CD11b + cells accumulated intrahepatically as Ly6C lo MoMFs to exacerbate CCl 4 -induced liver fibrosis. The splenocyte migration into the fibrotic liver was further directly visualized by spleen-specific photoconversion with KikGR mice and confirmed by CD45.1 + /CD45.2 + spleen transplantation. Spleen-derived CD11b + cells purified from fibrotic livers were then annotated by single-cell RNA sequencing, and a subtype of CD11b + CD43 hi Ly6C lo splenic monocytes (sM-1s) was identified, which was markedly expanded in both spleens and livers of mice with liver fibrosis. sM-1s exhibited mature feature with high expressions of F4/80, produced much ROS, and manifested preferential migration into livers. Once recruited, sM-1s underwent sequential transformation to sM-2s (highly expressed Mif , Msr1 , Clec4d , and Cstb ) and then to spleen-derived macrophages (sMφs) with macrophage features of higher expressions of CX 3 CR1, F4/80, MHC class II, and CD64 in the fibrotic hepatic milieu. Furthermore, sM-2s and sMφs were demonstrated capable of activating hepatic stellate cells and thus exacerbating liver fibrosis. CONCLUSIONS: CD11b + CD43 hi Ly6C lo splenic monocytes migrate into the liver and shift to macrophages, which account for the exacerbation of liver fibrosis. These findings reveal precise mechanisms of spleen-liver axis in hepatic pathogenesis and shed light on the potential of sM-1 as candidate target for controlling liver diseases.


Assuntos
Macrófagos , Baço , Camundongos , Animais , Baço/patologia , Macrófagos/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Monócitos/metabolismo , Camundongos Endogâmicos C57BL
16.
Phytother Res ; 37(1): 295-309, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36070933

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies with high mortality and poor prognosis. Baicalein, one of the major and bioactive flavonoids isolated from Scutellaria baicalensis Georgi, which is reported to have anti-proliferation effect in varying cancers, including HCC, whose underlying molecular mechanism is still largely unknown. In this study, we found that baicalein significantly inhibited proliferation and colony formation, blocked cell cycle, and promoted apoptosis in HCC cells MHCC-97H and SMMC-7721 in vitro and reduced tumor volume and weight in vivo. Increased microRNA (miR)-3,178 levels and decreased histone deacetylase 10 (HDAC10) expression were found in cells treated with baicalein and in patients' HCC tissues. HDAC10 was identified as a target gene of miR-3,178 by luciferase activity and western blot. Both baicalein treatment and overexpression of miR-3,178 could downregulate HDAC10 protein expression and inactivated AKT, MDM2/p53/Bcl2/Bax and FoxO3α/p27/CDK2/Cyclin E1 signal pathways. Not only that, knockdown of miR-3,178 could partly abolish the effects of baicalein and the restoration of HDAC10 could abated miR-3,178-mediated role in HCC cells. Collectively, baicalein inhibits cell viability, blocks cell cycle, and induces apoptosis in HCC cells by regulating the miR-3,178/HDAC10 pathway. This finding indicated that baicalein might be promising for treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia
17.
Front Immunol ; 14: 1343428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274829

RESUMO

Background: Cell fate and microenvironmental changes resulting from aberrant expression of specific proteins in tumors are one of the major causes of inadequate anti-tumor immune response and poor prognosis in head and neck cancer (HNC). Eukaryotic initiation factor 3C (eIF3c) has emerged as a promising therapeutic target for HNC due to its ability to regulate protein expression levels in tumor cells, but its drug development is difficult to achieve by targeting traditional protein-protein interactions. siRNA has emerged as a highly promising modality for drug development targeting eIF3c, while its application is hindered by challenges pertaining to inadequate stability and insufficient concentration specifically within tumor sites. Method: We employed a method to convert flexible siRNAs into stable and biologically active infinite Auric-sulfhydryl coordination supramolecular siRNAs (IacsRNAs). Through coordinated self-assembly, we successfully transformed eIF3C siRNAs into the carrier-free HNC nanotherapeutic agent Iacs-eif3c-RNA. The efficacy of this agent was evaluated in vivo using HNC xenograft models, demonstrating promising antitumor effects. Results: Iacs-eif3c-RNA demonstrated the ability to overcome the pharmacological obstacle associated with targeting eIF3C, resulting in a significant reduction in eIF3C expression within tumor tissues, as well as effective tumor cell proliferating suppression and apoptosis promotion. In comparison to monotherapy utilizing the chemotherapeutic agent cisplatin, Iacs-eif3c-RNA exhibited superior anti-tumor efficacy and favorable biosafety. Conclusion: The utilization of Iacs-eif3c-RNA as a carrier-free nanotherapeutic agent presents a promising and innovative approach for addressing HNC treating challenges. Moreover, this strategy demonstrates potential for the translation of therapeutic siRNAs into clinical drugs, extending its applicability to the treatment of other cancers and various diseases.


Assuntos
Neoplasias de Cabeça e Pescoço , Ácidos Nucleicos , Humanos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Cisplatino , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Expressão Gênica
18.
Front Immunol ; 13: 1038401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426356

RESUMO

The liver immune microenvironment is a key element in the development of hepatic inflammation in NAFLD. ApoA4 deficiency increases the hepatic lipid burden, insulin resistance, and metabolic inflammation. However, the effect of ApoA4 on liver immune cells and the precise immune cell subsets that exacerbate fatty liver remain elusive. The aim of this study was to profile the hepatic immune cells affected by ApoA4 in NAFL. We performed scRNA-seq on liver immune cells from WT and ApoA4-deficient mice administered a high-fat diet. Immunostaining and qRT-PCR analysis were used to validate the results of scRNA-seq. We identified 10 discrete immune cell populations comprising macrophages, DCs, granulocytes, B, T and NK&NKT cells and characterized their subsets, gene expression profiles, and functional modules. ApoA4 deficiency led to significant increases in the abundance of specific subsets, including inflammatory macrophages (2-Mφ-Cxcl9 and 4-Mφ-Cxcl2) and activated granulocytes (0-Gran-Wfdc17). Moreover, ApoA4 deficiency resulted in higher Lgals3, Ctss, Fcgr2b, Spp1, Cxcl2, and Elane levels and lower Nr4a1 levels in hepatic immune cells. These genes were consistent with human NAFLD-associated marker genes linked to disease severity. The expression of NE and IL-1ß in granulocytes and macrophages as key ApoA4 targets were validate in the presence or absence of ApoA4 by immunostaining. The scRNA-seq data analyses revealed reprogramming of liver immune cells resulted from ApoA4 deficiency. We uncovered that the emergence of ApoA4-associated immune subsets (namely Cxcl9+ macrophage, Cxcl2+ macrophage and Wfdc17+ granulocyte), pathways, and NAFLD-related marker genes may promote the development of NAFL. These findings may provide novel therapeutic targets for NAFL and the foundations for further studying the effects of ApoA4 on immune cells in various diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Análise de Sequência de RNA
19.
Front Immunol ; 13: 941721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052075

RESUMO

The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.


Assuntos
Hepatopatias , Tecido Adiposo/patologia , Animais , Homeostase , Hepatopatias/patologia , Baço/patologia
20.
Gene ; 845: 146865, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067865

RESUMO

Exposure to cadmium (Cd), a heavy metal, can cause strong and toxic side effects. Cd can enter the body of organisms in several ways, leading to various pathological reactions in the body. Tegillarca granosa is a kind of bivalve shellfish favored by people in the coastal areas of China. Bivalve shellfish can easily absorb heavy metal pollutants from water bodies while filter feeding. T. granosa is considered a hyper-accumulator of Cd, and the TgABCA3 gene is highly expressed in individuals with a high content of Cd-exposed blood clam. However, it is unclear whether TgABCA3 is involved in Cd ion transport in blood clam and the molecular mechanism for the mechanism of the Cd-induced responses for maintaining cell homeostasis. In this study, the complete cDNA of the TgABCA3 gene was analyzed to provide insights into the roles of TgABCA3 in resistance against Cd in blood clam. The complete sequence of TgABCA3 showed high identity to that of TgABCA3 from other bivalves and contained some classical motifs of ATP-binding cassette transport proteins. TgABCA3 expression in different tissues was measured using real-time quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. The tissue-specific expression showed that TgABCA3 expression was highest in the gill tissue. The TgABCA3 expression in the gill tissue was silenced using the RNA interference technique. After TgABCA3 silencing, the TgABCA3 expression decreased, the Cd content increased, the oxygen consumption and ammonia excretion rates increased, and the ingestion rate decreased. These results showing that the extents of Cd accumulation and resulting toxic effects are related to expression levels and activity of TgABCA3 indicate that TgABCA3 has a protective function against Cd in the clam. This increase in Cd accumulation results in serious damage to the body, leading to the enhancement of its physiological metabolism. Therefore, the findings of the study demonstrated that TgABCA3 can participate in the transport of Cd ions in the blood clam through active transport and play a vital role in Cd detoxification.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Arcidae , Bivalves , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Animais , Arcidae/genética , Arcidae/metabolismo , Bivalves/genética , Bivalves/metabolismo , Cádmio/metabolismo , Proteínas de Transporte/metabolismo , DNA Complementar/genética , Poluentes Ambientais/farmacologia , Metais Pesados/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA