Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7504-7520, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412232

RESUMO

The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Exossomos/metabolismo , Diferenciação Celular/genética , Porosidade , Fosfatidilinositol 3-Quinases , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Regeneração Óssea/fisiologia , Osteogênese , Impressão Tridimensional
2.
Shanghai Kou Qiang Yi Xue ; 32(3): 287-291, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37803985

RESUMO

PURPOSE: The aim of this study was to introduce a new method to evaluate the clinical accuracy of implant position. The results were compared to traditional cone beam CT (CBCT) method. METHODS: A total of 36 implants from 24 patients with sufficient bone volume were enrolled into the study. CBCT method and digital registration method were compared to evaluate the accuracy of implant position. The measurement parameters were defined as deviations between ideal and postsurgical implant position at occlusal point(d1), apical point(d2) and axis(α). The deviations between two methods were analyzed with SPSS 19.0 software package. RESULTS: The deviations between ideal and postsurgical implant position using CBCT were (0.88±0.64) mm for occlusal point, (1.07±0.85) mm for apical point and (4.74±2.35)° for angle. In digital registration method, the deviations were (0.86±0.67) mm for occlusal point, (1.12±0.88) mm for apical point and (4.56±2.66)° for angle. No significant difference(P>0.05) was found between the two methods. CONCLUSIONS: There was no significant difference between the two methods in evaluating the clinical accuracy of implant position. Digital registration method could be accepted in clinical application.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Implantação Dentária Endóssea/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional , Desenho Assistido por Computador
3.
Biomaterials ; 276: 120997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229243

RESUMO

Implantable self-powered generators (ISPGs) have been extensively explored as energy supplies for driving electronics and electrically stimulated therapeutics in vivo. However, some drawbacks arise, such as complicated architectonics, inescapability of wire connection, energy instability, and consumption. In this study, a host-coupling bio-nanogenerator (HCBG) is developed to configure a self-powered regional electrical environment for powerful bone regeneration. An HCBG consists of a porous electret nanofiber mat coupled with interstitial fluid and stimulated objects of the host after implantation, forming a host coupling effect. This bio-nanogenerator not only overcomes the disadvantages of general ISPGs, but also accomplishes both biomechanical energy scavenging and electrical stimulation therapeutics. The enhancement of osteogenesis differentiation of bone marrow mesenchymal stem cells in vitro and bone regeneration in vivo are remarkably achieved. Moreover, osteogenic ability is systematically evaluated by regulating the electrical performance of HCBGs. Osteogenic differentiation is activated by upregulating more cytosolic calcium ion, following to activate the calcium ion-induced osteogenic signal pathway, while applying electrical stimulation. As an implantable medical technology, the HCBG provides an explorative insight to facilitate the development of ISPG-based electrical medical therapeutics.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Eletricidade
4.
Biomaterials ; 274: 120841, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984633

RESUMO

Mesenchymal stem cells (MSCs) secrete paracrine trophic factors that are beneficial for tissue regeneration. In this study, a sponge-like scaffold with hierarchical and interconnected pores was developed using low-temperature deposition modeling (LDM) printing. Its effects on the cellular behavior, especially on the paracrine secretion patterns of MSCs, were comprehensively investigated. We found that compared with the scaffolds printed via the fused deposition modeling (FDM) technique, the LDM-printed sponges enhanced the adhesion, retention, survival, and ingrowth of MSCs and promoted cell-material interactions. Moreover, the paracrine functions of the cultured MSCs on the LDM-printed sponges were improved, with significant secretion of upregulated immunomodulatory, angiogenic, and osteogenic factors. MSCs on the LDM-printed sponges exert beneficial paracrine effects on multiple regenerative processes, including macrophage polarization, tube formation, and osteogenesis, verifying the enhanced immunomodulatory, angiogenic, and osteogenic potential. Further protein function assays indicated that focal adhesion kinase (FAK), downstream AKT, and yes-associated-protein (YAP) signaling might participate in the required mechanotransductive pathways, through which the hierarchical porous structures stimulated the paracrine effects of MSCs. In a rat distal femoral defect model, the MSC-laden LDM-printed sponges significantly promoted vascularized bone regeneration. The results of the present study demonstrate that the hierarchical porous biomimetic sponges prepared via LDM printing have potential applications in tissue engineering based on their cell-material interaction promotion and MSC paracrine function modulation effects. Furthermore, our findings suggest that the optimization of biomaterial properties to direct the paracrine signaling of MSCs would enhance tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Diferenciação Celular , Osteogênese , Porosidade , Ratos , Temperatura , Engenharia Tecidual , Alicerces Teciduais
5.
Bioact Mater ; 6(7): 2173-2186, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33511315

RESUMO

Articular cartilage injury is a common disease in the field of orthopedics. Because cartilage has poor self-repairing ability, medical intervention is needed. Using melt electro-writing (MEW) technology, tissue engineering scaffolds with high porosity and high precision can be prepared. However, ordinary materials, especially natural polymer materials, are difficult to print. In this study, gelatin was mixed with poly (lactic-co-glycolic acid) to prepare high-concentration and high-viscosity printer ink, which had good printability and formability. A composite scaffold with full-layer TGF-ß1 loading mixed with hydroxyapatite was prepared, and the scaffold was implanted at the cartilage injury site; microfracture surgery was conducted to induce the mesenchyme in the bone marrow. Quality stem cells thereby promoted the repair of damaged cartilage. In summary, this study developed a novel printing method, explored the molding conditions based on MEW printing ink, and constructed a bioactive cartilage repair scaffold. The scaffold can use autologous bone marrow mesenchymal stem cells and induce their differentiation to promote cartilage repair.

6.
Adv Healthc Mater ; 10(2): e2000573, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166086

RESUMO

Osteosarcoma is the most primary type of bone tumor occurring in the pediatric and adolescent age groups. In order to obtain the most appropriate prognosis, both tumor recurrence inhibition and bone repair promotion are required. In this study, a ternary nanoscale biomaterial/antitumor drug complex including hydroxyapatite (HA), bovine serum albumin (BSA) and paclitaxel (PTX) is prepared for post-surgical cancer treatment of osteosarcoma in situ. The HA-BSA-PTX nanoparticles, about 55 nm in diameter with drug loading efficiency (32.17 wt%), have sustained release properties of PTX and calcium ions (Ca2+ ) and low cytotoxicity to human fetal osteoblastic (hFOB 1.19) cells in vitro. However, for osteosarcoma (143B) cells, the proliferation, migration, and invasion ability are significantly inhibited. The in situ osteosarcoma model studies demonstrate that HA-BSA-PTX nanoparticles have significant anticancer effects and can effectively inhibit tumor metastasis. Meanwhile, the detection of alkaline phosphatase activity, calcium deposition, and reverse transcription-polymerase chain reaction proves that the HA-BSA-PTX nanoparticles can promote the osteogenic differentiation. Therefore, the HA-BSA-PTX nanodrug delivery system combined with sustained drug release, antitumor, and osteogenesis effects is a promising agent for osteosarcoma adjuvant therapy.


Assuntos
Nanopartículas , Osteossarcoma , Adolescente , Linhagem Celular Tumoral , Criança , Portadores de Fármacos , Durapatita , Humanos , Osteogênese , Osteossarcoma/tratamento farmacológico , Paclitaxel/farmacologia , Soroalbumina Bovina
7.
Theranostics ; 10(22): 10214-10230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929344

RESUMO

Rationale: Articular cartilage injury is quite common. However, post-injury cartilage repair is challenging and often requires medical intervention, which can be aided by 3D printed tissue engineering scaffolds. Specifically, the high accuracy of Melt Electro-Writing (MEW) technology facilitates the printing of scaffolds that imitate the structure and composition of natural cartilage to promote repair. Methods: MEW and Inkjet printing technology was employed to manufacture a composite scaffold that was then implanted into a cartilage injury site through microfracture surgery. While printing polycaprolactone (PCL) or PCL/hydroxyapatite (HA) scaffolds, cytokine-containing microspheres were sprayed alternately to form multiple layers containing transforming growth factor-ß1 and bone morphogenetic protein-7 (surface layer), insulin-like growth factor-1 (middle layer), and HA (deep layer). Results: The composite biological scaffold was conducive to adhesion, proliferation, and differentiation of mesenchymal stem cells recruited from the bone marrow and blood. Meanwhile, the environmental differences between the scaffold's layers contributed to the regional heterogeneity of chondrocytes and secreted proteins to promote functional cartilage regeneration. The biological effect of the composite scaffold was validated both in vitro and in vivo. Conclusion: A cartilage repair scaffold was established with high precision as well as promising mechanical and biological properties. This scaffold can promote the repair of cartilage injury by using, and inducing the differentiation and expression of, autologous bone marrow mesenchymal stem cells.


Assuntos
Doenças das Cartilagens/tratamento farmacológico , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Medula Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Durapatita/química , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Poliésteres/química , Impressão Tridimensional , Coelhos , Regeneração/efeitos dos fármacos
8.
Colloids Surf B Biointerfaces ; 176: 219-229, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30623809

RESUMO

Guided bone regeneration (GBR) membranes have the potential to prevent the invasion of epithelial and connective tissues as well as to maintain a stable space for facilitating the ingrowth of regenerative bone tissue. However, the bioactivity and regeneration potential of currently available membranes still need to be improved. In this study, a novel bi-layered membrane with both osteogenic and antibacterial functions was developed for GBR applications. The loose layer (LL) of the membrane was composed of conjugated electrospun poly (lactic-co-glycolic acid) (PLGA)/gelatin nanofibers incorporating dexamethasone-loaded mesoporous silica nanoparticles (DEX@MSNs), while the dense layer (DL) of the membrane consisted of traditionally electrospun PLGA nanofibers loaded with the broad-spectrum antibiotic doxycycline hyclate (DCH). Morphological results showed that the LL (DEX@MSNs/PLGA/Gel) membrane exhibited a porous and loosely packed structure, which was beneficial for cell adhesion and infiltration, while the DL (DCH/PLGA) membrane remained dense enough to act as a barrier. In vitro drug release tests indicated that both DEX and DCH followed a favorable sustained release profile. The cell viability evaluation suggested that the electrospun membranes possessed good cytocompatibility. Furthermore, in vitro osteogenesis analyses demonstrated that the DEX@MSNs/PLGA/Gel composite membrane possessed an enhanced osteoinductive capacity for rat bone marrow stem cells (BMSCs), which was verified by the increased alkaline phosphatase (ALP) activity, the enhanced calcium deposition, and the upregulated osteocalcin (OCN) expression. In vitro antimicrobial experiments revealed the effective antibacterial potency of the DCH/PLGA membrane. In conclusion, the prepared nanocarrier-incorporated bi-layered composite membrane with combined osteogenic and antibacterial properties may be a promising candidate for GBR application.


Assuntos
Antibacterianos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Nanofibras/química , Osteogênese , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Membranas Artificiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Dióxido de Silício/química , Staphylococcus aureus/efeitos dos fármacos
9.
Oral Dis ; 25(2): 523-534, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30417976

RESUMO

OBJECTIVES: To identify potentially pathogenic mutations for tooth agenesis by whole-exome sequencing. SUBJECTS AND METHODS: Ten Chinese families including five families with ectodermal dysplasia (syndromic tooth agenesis) and five families with selective tooth agenesis were included. Whole-exome sequencing was performed using genomic DNA. Potentially pathogenic mutations were identified after data filtering and screening. The pathogenicity of novel variants was investigated by segregation analysis, in silico analysis, and functional studies. RESULTS: One novel mutation (c.441_442insACTCT) and three reported mutations (c.252delT, c.463C>T, and c.1013C>T) in EDA were identified in families with ectodermal dysplasia. The novel EDA mutation was co-segregated with phenotype. A functional study revealed that NF-κB activation was compromised by the identified mutations. The secretion of active EDA was also compromised detection by western blotting. Novel Wnt10A mutations (c.521T>C and c.653T>G) and EVC2 mutation (c.1472C>T) were identified in families with selective tooth agenesis. The Wnt10A c.521T>C mutation and the EVC2 c.1472C>T mutation were considered as pathogenic for affecting highly conserved amino acids, co-segregated with phenotype and predicted to be disease-causing by SIFT and PolyPhen2. Moreover, several reported mutations in PAX9, Wnt10A, and FGFR3 were also detected. CONCLUSIONS: Our study expanded our knowledge on tooth agenesis spectrum by identifying novel variants.


Assuntos
Anodontia/genética , Displasia Ectodérmica/genética , Ectodisplasinas/genética , Proteínas/genética , Proteínas Wnt/genética , Adolescente , Adulto , Idoso , Povo Asiático/genética , China , Ectodisplasinas/metabolismo , Feminino , Mutação da Fase de Leitura , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fator de Transcrição PAX9/genética , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Transfecção , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA